A Structural Assessment of Sycamore Maple Bark Disintegration by Nectria cinnabarina
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F22%3A43921372" target="_blank" >RIV/62156489:43410/22:43921372 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.3390/f13030452" target="_blank" >https://doi.org/10.3390/f13030452</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/f13030452" target="_blank" >10.3390/f13030452</a>
Alternative languages
Result language
angličtina
Original language name
A Structural Assessment of Sycamore Maple Bark Disintegration by Nectria cinnabarina
Original language description
Previous phytopathological studies of the fungal pathogen Nectria cinnabarina have been focused on its distribution and host diversity but little is known about the spread of this pathogen and the defence responses of forest trees to an infection inside host tissues. Histopathological alterations of bark, periderm, phloem and woody tissues were investigated in sycamore maple (Acer pseudoplatanus) branches following their natural attack by the advanced anamorph and teleomorph developmental stages of the fungus. Light, fluorescence, confocal laser scanning and scanning electron microscopy techniques supplemented by X-ray micro-computed tomography imaging were used to distinguish between healthy and disintegrated plant tissues. The intercellular spread of fungal hyphae was found primarily in the phelloderm. Expanding hyphae aggregations produced ruptures in the phellem and the disintegration of both phellogen and phellodermal parenchyma cells in close proximity to the expanding fruiting bodies of the fungus. Thicker hyphae of the teleomorph fungal stage heavily disintegrated the phelloderm tissues and also induced enhanced sclerification of the nearby phloem tissues that limited the spread of the infection into the sieve tubes. Both the intercellular and intracellular spread of hyphae inside the peripheral parts of sclereid clusters led to the disintegration of the compound middle lamellae but the hyphae were only rarely able to pass through these structural phloem barriers. The massive fungal colonization of both lumens and disintegrated tangential cell walls of ray parenchyma cells resulted in severe cambial necroses. Although the hyphae penetrated into the outermost annual growth rings of the xylem, no cell wall disintegration of the parenchyma cells, vessels and fibres was revealed. Despite the local cambial necroses and severe phloem ray disintegration, the bark remained attached to the examined branches and no bark cankers were formed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
40102 - Forestry
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Forests
ISSN
1999-4907
e-ISSN
1999-4907
Volume of the periodical
13
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
12
Pages from-to
452
UT code for WoS article
000775518000001
EID of the result in the Scopus database
2-s2.0-85127599582