All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Atmospheric CO2 and CH4 Fluctuations over the Continent-Sea Interface in the Yenisei River Sector of the Kara Sea

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F22%3A43922108" target="_blank" >RIV/62156489:43410/22:43922108 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/atmos13091402" target="_blank" >https://doi.org/10.3390/atmos13091402</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/atmos13091402" target="_blank" >10.3390/atmos13091402</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Atmospheric CO2 and CH4 Fluctuations over the Continent-Sea Interface in the Yenisei River Sector of the Kara Sea

  • Original language description

    Observations of the atmospheric sources and sinks of carbon dioxide (CO2) and methane (CH4) in the pan-Arctic domain are extremely scarce, limiting our knowledge of carbon turnover in this climatically sensitive environment and the fate of the enormous carbon reservoirs conserved in the permafrost. Especially critical are the gaps in the high latitudes of Siberia, covered by the vast permafrost underlain tundra, where only several atmospheric monitoring sites are operational. This paper presents the first two years (September 2018-January 2021) of accurate continuous observations of atmospheric CO2 and CH4 dry mole fractions at the recently deployed tower-based measurement station &quot;DIAMIS&quot; (73.5068o N, 80.5198o E) located on the southwestern coast of the Taimyr Peninsula, Siberia, at the Gulf of the Yenisei River that opens to the Kara Sea (Arctic Ocean). In this paper, we summarized the scientific rationale of the site, examined the seasonal footprint of the station with an analysis of terrestrial vegetation and maritime sector contributing to the captured atmospheric signal, and illustrated temporal patterns of CO2 and CH4 for the daytime mixed atmospheric layer over the continent-sea interface. Along with the temporal variations reflecting a signal caused pan-Arctic and not very much influenced by the local processes, we analyzed the spatiotemporal distribution of the synoptic anomalies representing the atmospheric signatures of regional sources and sinks of CO2 and CH4 for the studied high-arctic Siberian domain of ~625 thousand km2, with nearly equal capturing the land surface (54%) and the ocean (46%) throughout the year. Both for CO2 and CH4, we have observed a sea-continent declining trend, presuming a larger depletion of trace gases in the maritime air masses compared to the continental domain. So far, over the Kara Sea, we have not detected any prominent signals of CH4 that might have indicated processes of subsea permafrost degradation and occurrence of cold seeps-still mainly observed in the eastern Arctic Seas-The Laptev Sea and the East-Siberian Sea.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10509 - Meteorology and atmospheric sciences

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Atmosphere

  • ISSN

    2073-4433

  • e-ISSN

    2073-4433

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    1402

  • Pages from-to

    21

  • UT code for WoS article

    000856226700001

  • EID of the result in the Scopus database

    2-s2.0-85138749280