All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Comparison of Rainfall Partitioning and Estimation of the Utilisation of Available Water in a Monoculture Beech Forest and a Mixed Beech-Oak-Linden Forest

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F23%3A43923020" target="_blank" >RIV/62156489:43410/23:43923020 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/w15020285" target="_blank" >https://doi.org/10.3390/w15020285</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/w15020285" target="_blank" >10.3390/w15020285</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Comparison of Rainfall Partitioning and Estimation of the Utilisation of Available Water in a Monoculture Beech Forest and a Mixed Beech-Oak-Linden Forest

  • Original language description

    Monoculture forests formed by Fagus sylvatica L. belong to one of the most sensitive forest ecosystems, mainly at low altitudes. Cultivation of this species in mixed stands should reduce its sensitivity to drought in the vegetation period, which is why we researched the water balance in one pure-beech (i.e., monoculture) and one beech-oak-linden (i.e., mixed) forest. This research was carried out in Drahanská vrchovina in the Czech Republic in the period 2019-2021. The total precipitation was measured, together with its partitions (i.e., throughfall and stemflow), and the crown interception was also calculated. The total forest transpiration was calculated from the values measured on the sample trees. The values of each rainfall partition and transpiration (and their percentages) were compared. The rainfall partitions in the monoculture forest differed from those in the mixed forest. While, on average, the annual percentages of the throughfall, stemflow and crown interception in the monoculture forest were 63%, 6% and 31%, respectively, these partitions in the mixed forest were 76%, 2% and 22%, respectively. The crown interception was greater in the monoculture (31% of precipitation) and the effective precipitation (i.e., the sum of throughfall and stemflow) was greater in the mixed forest (78% of precipitation). The greatest differences (in each rainfall partition) between the monoculture and mixed forest were in the summer and winter. The throughfall was greater in the mixed forest (ca. 22% in the summer and ca. 12% in the winter), and the stemflow was greater in the monoculture forest (ca. 66% in the summer and ca. 51% in the winter). The mean annual transpiration was 318 (+-52) mm in the monoculture and 451 (+-58) mm in the mixed forest, i.e., about 99 (+-65) mm more in the mixed forest than in the monoculture forest. The transpiration, in comparison with the effective precipitation, made up, on average, 70% of the effective precipitation in the monoculture forest. On the other hand, the transpiration reached 71% (in 2019), 74% (in 2020) and even 100% (in 2021) of the effective precipitation in the mixed forest. Our results show that an oak-beech-linden mixed forest can manage water better than a beech monoculture because more precipitation leaked through the mixed forest onto the soil than through the monoculture, especially via the throughfall in the summer. On the other hand, the amount of water that transpired was greater in the mixed forest than in the monoculture. However, the utilisation of the effective precipitation by trees was very similar in the monoculture in all three years, while, in the mixed forest, the utilisation of the effective water by trees increased, which may have been caused by the saturation of the deeper soil layers with water in the first two years of measurement. We can, Therefore, say that, at lower altitudes, it will be more suitable in the future to cultivate beech in mixed forests because of the assumed lack of water (mainly in early spring and summer).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40102 - Forestry

Result continuities

  • Project

    <a href="/en/project/SS01010174" target="_blank" >SS01010174: Functionality of the Territorial System of Ecological Stability and its Perspective in the Context of Global Climate Change</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Water

  • ISSN

    2073-4441

  • e-ISSN

    2073-4441

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    15

  • Pages from-to

    285

  • UT code for WoS article

    000916438200001

  • EID of the result in the Scopus database

    2-s2.0-85146808990