All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Linking fungal community structure with soil nitrogen dynamics following forest conversion in a subalpine forest in China

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F23%3A43923324" target="_blank" >RIV/62156489:43410/23:43923324 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.geoderma.2023.116448" target="_blank" >https://doi.org/10.1016/j.geoderma.2023.116448</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.geoderma.2023.116448" target="_blank" >10.1016/j.geoderma.2023.116448</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Linking fungal community structure with soil nitrogen dynamics following forest conversion in a subalpine forest in China

  • Original language description

    The conversion of natural forests to plantations affects soil carbon (C) and nitrogen (N) dynamics. However, the underlying microbial mechanisms of C and N dynamics caused by forest conversion, particularly the functional role of ectomycorrhizal (ECM) fungi, remain largely unknown. Here, we investigated the soil and root-associated fungal communities, soil and ECM root enzyme activities, and C and N mineralization rates in natural forests and plantations in the western Sichuan subalpine coniferous forest. Soil fungal and root ECM fungal communities were determined by high-throughput and Sanger sequencing, respectively. ECM root surface enzymes were used to assess fungal function, while soil enzymes, C and N mineralization, were used to evaluate soil function. Our results showed that clearing natural forests and converting them to plantations led to lower soil organic carbon (SOC), total nitrogen (TN), and pH, which drove changes in ECM and saprophytic (SAP) fungal communities. After forest conversion, the main difference in the fungal community was an increase in the ratio of ECM to SAP fungi. The most apparent change in the soil ECM fungal community is the shift of the dominant genera from Russula to Cortinarius and Piloderma. Subsequently, the function of the ECM fungal community was altered. The results indicated that the conversion of the natural forest to the plantation reduced ECM community β-glucosidase (βG), β-glucuronidase (βLU), N-acetyl-β-D-glucosaminidase (NAG), and acid phosphatase (AP) activities, and soil βG, NAG, and leucine aminopeptidase (LAP) activities. Among them, the activities of βG, βLU, and NAG in the ECM fungal community were significantly correlated with the activities of βG, βLU, and NAG in soil, respectively. Finally, we show that converting natural forests to plantations significantly increased the ammonification rate while decreasing the nitrification and mineralization rates. The close relationship between the relative abundance and diversity of the ECM fungal community, ECM communities and soil NAG, and N processes indicated that the changes in soil N dynamic after forest conversion were directly related to the changes in the ECM fungal community. Our results provide insight into soil C and N dynamics mechanisms resulting from forest conversion.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10612 - Mycology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Geoderma

  • ISSN

    0016-7061

  • e-ISSN

    1872-6259

  • Volume of the periodical

    433

  • Issue of the periodical within the volume

    May

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    13

  • Pages from-to

    116448

  • UT code for WoS article

    000966283600001

  • EID of the result in the Scopus database

    2-s2.0-85151008831