Optimizing chili production in drought stress: combining Zn-quantum dot biochar and proline for improved growth and yield
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F24%3A43924921" target="_blank" >RIV/62156489:43410/24:43924921 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1038/s41598-024-57204-w" target="_blank" >https://doi.org/10.1038/s41598-024-57204-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-024-57204-w" target="_blank" >10.1038/s41598-024-57204-w</a>
Alternative languages
Result language
angličtina
Original language name
Optimizing chili production in drought stress: combining Zn-quantum dot biochar and proline for improved growth and yield
Original language description
The reduction in crop productivity due to drought stress, is a major concern in agriculture. Drought stress usually disrupts photosynthesis by triggering oxidative stress and generating reactive oxygen species (ROS). The use of zinc-quantum dot biochar (ZQDB) and proline (Pro) can be effective techniques to overcome this issue. Biochar has the potential to improve the water use efficiency while proline can play an imperative role in minimization of adverse impacts of ROS Proline, functioning as an osmotic protector, efficiently mitigates the adverse effects of heavy metals on plants by maintaining cellular structure, scavenging free radicals, and ensuring the stability of cellular integrity. That's why current study explored the impact of ZQDB and proline on chili growth under drought stress. Four treatments, i.e., control, 0.4%ZQDB, 0.1 mM Pro, and 0.4%ZQDB + Pro, were applied in 4 replications following the complete randomized design. Results exhibited that 0.4%ZQDB + Pro caused an increases in chili plant dry weight (29.28%), plant height (28.12%), fruit length (29.20%), fruit girth (59.81%), and fruit yield (55.78%) over control under drought stress. A significant increment in chlorophyll a (18.97%), chlorophyll b (49.02%), and total chlorophyll (26.67%), compared to control under drought stress, confirmed the effectiveness of 0.4%ZQDB + Pro. Furthermore, improvement in leaves N, P, and K concentration over control validated the efficacy of 0.4%ZQDB + Pro against drought stress. In conclusion, 0.4%ZQDB + Pro can mitigate drought stress in chili. More investigations are suggested to declare 0.4%ZQDB + Pro as promising amendment for mitigation of drought stress in other crops as well under changing climatic situations.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
40105 - Horticulture, viticulture
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Scientific Reports
ISSN
2045-2322
e-ISSN
2045-2322
Volume of the periodical
14
Issue of the periodical within the volume
19 March
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
6627
UT code for WoS article
001188276500079
EID of the result in the Scopus database
2-s2.0-85188143011