All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hot-Pressing Process of Flat-Pressed Wood–Polymer Composites: Theory and Experiment

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F24%3A43925856" target="_blank" >RIV/62156489:43410/24:43925856 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/polym16202931" target="_blank" >https://doi.org/10.3390/polym16202931</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/polym16202931" target="_blank" >10.3390/polym16202931</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hot-Pressing Process of Flat-Pressed Wood–Polymer Composites: Theory and Experiment

  • Original language description

    The objective of this research was to develop a mathematical model of the hot-pressing process for making flat-pressed wood-polymer composites (FPWPCs). This model was used to calculate and predict the temperature and time required for FPWPC pressing. The model&apos;s performance was analysed using the experimental results of hot pressing FPWPCs. It was found that an increase in the content of wood particles led to a rapid increase in the pressing time. The model and experiment showed that the core temperature of the wood-polymer mat remained nearly constant for the first 20-30 s of the hot-pressing process. After this period, this temperature increased rapidly until it reached 100 oC, after which the rate of increase began to decelerate sharply. This transition was more distinct in FPWPCs with a high wood-particle content, while in those with a high thermoplastic-polymer content, it was smoother. Increasing the pressing temperature contributed to a reduction in the time required to heat the FPWPC, as confirmed by both experimental data and the modelling of the hot-pressing process. A decrease in the predicted density of the FPWPC resulted in a directly proportional increase in the time required to heat the mat. Validation of the mathematical model revealed a mean absolute percentage error (MAPE) of only 2.5%, confirming its high precision and reliability. The developed mathematical model exhibited a high degree of accuracy and can be used for further calculations of the time required for FPWPC pressing, considering variable parameters such as pressing temperature, wood-polymer ratio, mat thickness, and density.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20502 - Paper and wood

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Polymers

  • ISSN

    2073-4360

  • e-ISSN

    2073-4360

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    20

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    10

  • Pages from-to

    2931

  • UT code for WoS article

    001341645900001

  • EID of the result in the Scopus database

    2-s2.0-85207635721