All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Decline in Stomatal Conductance Is the Primary Reason for Low Photosynthesis in Veteran Pedunculate Oak Trees

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F24%3A43926159" target="_blank" >RIV/62156489:43410/24:43926159 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/f15122118" target="_blank" >https://doi.org/10.3390/f15122118</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/f15122118" target="_blank" >10.3390/f15122118</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Decline in Stomatal Conductance Is the Primary Reason for Low Photosynthesis in Veteran Pedunculate Oak Trees

  • Original language description

    Veteran trees are important elements in forests, as well as urban and suburban areas, and represent part of our cultural heritage. However, increasing age also brings a reduction in vitality. Information on tree physiological vitality can be gained by examining ecophysiological traits, such as photosynthesis, stomatal conductance, and leaf water potential. Here, we assess the effects of age on the photosynthesis and water status of 600-year-old pedunculate oak trees (Quercus robur L.) by comparing them with neighbouring 25-year-old trees. While gas exchange measurements indicated lowered photosynthesis in old trees, their maximum rates of Rubisco carboxylation and electron transport were similar to younger trees, suggesting that biochemical limitations to photosynthesis are not the reason behind their reduced vitality. Moreover, there was no difference in light-adapted and dark-adapted chlorophyll fluorescence between old and young trees. In contrast, stomatal conductance (under unlimited soil water availability) was lower, indicating increased stomatal limitations to photosynthesis in veteran trees. On the other hand, high water potential during mild summer drought conditions indicated better access to soil water in old trees, while stomatal conductance in old trees was higher than in young trees at night. A reduced ability to open and close stomata may be one of the reasons for the observed decline in veteran tree vitality, with a lowered ability to regulate stomatal conductance resulting in reduced carbon gain and unnecessarily high water loss.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40102 - Forestry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Forests

  • ISSN

    1999-4907

  • e-ISSN

    1999-4907

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    12

  • Pages from-to

    2118

  • UT code for WoS article

    001384355000001

  • EID of the result in the Scopus database

    2-s2.0-85213084245