Green synthesis of silver nanoparticles using plants originating in tropical areas of Vietnam for biological applications
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43510%2F20%3A43917984" target="_blank" >RIV/62156489:43510/20:43917984 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.37904/nanocon.2019.8522" target="_blank" >https://doi.org/10.37904/nanocon.2019.8522</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37904/nanocon.2019.8522" target="_blank" >10.37904/nanocon.2019.8522</a>
Alternative languages
Result language
angličtina
Original language name
Green synthesis of silver nanoparticles using plants originating in tropical areas of Vietnam for biological applications
Original language description
Silver nanoparticles (AgNPs) exhibit excellent antibacterial effects against both Gram-positive and Gram-negative bacteria. They represent a possible way to combat bacteria resistant to conventional antibiotic treatment. Over time, bacteria also become resistant to AgNPs. One solution is to modify the AgNP surface with various simple or more complex biomolecules with antibacterial activity. Such modifications can be achieved using so-called green synthesis. The green synthesis of AgNPs is based, for example, on the use of plant extracts as reducing agents. The AgNPs obtained have biomolecules derived from the extract bound to their surface. The aim of this work was to identify other plant species with a high content of secondary metabolites with the potential antibacterial activity that would make them suitable for green synthesis. A large number of plants occurring in tropical areas of Vietnam contain a lot of hitherto unspecified substances with the potential antibacterial effect. Nanoparticles prepared using extracts of harvested plants were characterized by physical and biochemical methods. Silver nanoparticles with the modified surface can be used to combat resistant bacteria.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
21001 - Nano-materials (production and properties)
Result continuities
Project
<a href="/en/project/LTC18002" target="_blank" >LTC18002: The development of new materials suitabled for 3D printing with antimicrobial properties (3D ANTIMICROB)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
NANOCON 2019: Conference Proceedings
ISBN
978-80-87294-95-6
ISSN
2694-930X
e-ISSN
—
Number of pages
6
Pages from-to
463-468
Publisher name
Tanger Ltd.
Place of publication
Ostrava
Event location
Brno
Event date
Oct 16, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000664115400079