All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Biochemical response of oakleaf lettuce seedlings to different concentrations of some metal(oid) oxide nanoparticles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43510%2F20%3A43918189" target="_blank" >RIV/62156489:43510/20:43918189 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/agronomy10070997" target="_blank" >https://doi.org/10.3390/agronomy10070997</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/agronomy10070997" target="_blank" >10.3390/agronomy10070997</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Biochemical response of oakleaf lettuce seedlings to different concentrations of some metal(oid) oxide nanoparticles

  • Original language description

    Nanoparticles (NPs) significantly modify the physiological functions and metabolome of plants. The purpose of the study was to investigate the effect of CeO2, Fe2O3, SnO2, TiO2, and SiO2 nanoparticles, applied in foliar spraying of oakleaf lettuce at concentrations 0.75% to 6%, on the antioxidant enzyme activity and content of non-enzymatic antioxidants, chlorophyll pigments, fresh weight (FW) and dry weight (DW). It was found that 3% Fe2O3-NPs caused a 27% decrease in fresh weight compared to control plants. Fe2O3-NPs caused an increase in dry weight (g 100 gMINUS SIGN 1 FW) when compared to the control for all concentrations, but total DW (g per plant) was similar for all NPs treatments. Significant increases in chlorophyll a + b content after treatment with 1.5% and 6% SiO2-NPs, 3% Fe2O3-NPs, and 3% TiO2-NPs were noted. Fe2O3-NPs caused a significant increase in the activity of ascorbate peroxidase, guaiacol peroxidase, and catalase (only for 3% Fe2O3-NPs). SnO2-NPs decreased ascorbate peroxidase (APX) and guaiacol peroxidase (GPOX) activity (for all tested concentrations) but increased catalase (CAT) activity when a 3% suspension of these NPs was applied. The level of glutathione (GSH) increased due to application of all metal/metalloid oxides, with the exception of SnO2-NPs. When all concentrations of TiO2-NPs were applied, L-ascorbic acid increased significantly, as well as increasing at higher concentrations of SiO2-NPs (3% and 6%) and at 0.75% and 3% Fe2O3-NPs. SiO2-NPs and TiO2-NPs significantly elevated the carotenoid and total phenolic content in treated plants compared to the control. The total antioxidant capacity of plants treated with 3% CeO2-NPs was almost twice as high as that of the control.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40105 - Horticulture, viticulture

Result continuities

  • Project

    <a href="/en/project/EF16_017%2F0002334" target="_blank" >EF16_017/0002334: Research Infrastructure for Young Scientists</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Agronomy

  • ISSN

    2073-4395

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    18

  • Pages from-to

    997

  • UT code for WoS article

    000557002500001

  • EID of the result in the Scopus database

    2-s2.0-85088951289