Effect of Biosynthesized Silver Nanoparticles on Bacterial Biofilm Changes in S. aureus and E. coli
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43510%2F22%3A43921724" target="_blank" >RIV/62156489:43510/22:43921724 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11110/22:10445315
Result on the web
<a href="https://doi.org/10.3390/nano12132183" target="_blank" >https://doi.org/10.3390/nano12132183</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/nano12132183" target="_blank" >10.3390/nano12132183</a>
Alternative languages
Result language
angličtina
Original language name
Effect of Biosynthesized Silver Nanoparticles on Bacterial Biofilm Changes in S. aureus and E. coli
Original language description
One approach for solving the problem of antibiotic resistance and bacterial persistence in biofilms is treatment with metals, including silver in the form of silver nanoparticles (AgNPs). Green synthesis is an environmentally friendly method to synthesize nanoparticles with a broad spectrum of unique properties that depend on the plant extracts used. AgNPs with antibacterial and antibiofilm effects were obtained using green synthesis from plant extracts of Lagerstroemia indica (Ag- NPs_LI), Alstonia scholaris (AgNPs_AS), and Aglaonema multifolium (AgNPs_AM). Nanoparticles were characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) analysis. The ability to quench free radicals and total phenolic content in solution were also evaluated. The antibacterial activity of AgNPs was studied by growth curves as well as using a diffusion test on agar medium plates to determine minimal inhibitory concentrations (MICs). The effect of AgNPs on bacterial biofilms was evaluated by crystal violet (CV) staining. Average minimum inhibitory concentrations of AgNPs_LI, AgNPs_AS, AgNPs_AM were 15+- 5, 20 +- 5, 20 + 5 g/mL and 20+- 5, 15 +- 5, 15 + 5 g/mL against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, respectively. The E. coli strain formed biofilms in the presence of AgNPs, a less dense biofilm than the S. aureus strain. The highest inhibitory and destructive effect on biofilms was exhibited by AgNPs prepared using an extract from L. indica.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10606 - Microbiology
Result continuities
Project
<a href="/en/project/LTC18002" target="_blank" >LTC18002: The development of new materials suitabled for 3D printing with antimicrobial properties (3D ANTIMICROB)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nanomaterials
ISSN
2079-4991
e-ISSN
2079-4991
Volume of the periodical
12
Issue of the periodical within the volume
13
Country of publishing house
CH - SWITZERLAND
Number of pages
20
Pages from-to
2183
UT code for WoS article
000825567900001
EID of the result in the Scopus database
2-s2.0-85132999166