A Microbiological, Toxicological, and Biochemical Study of the Effects of Fucoxanthin, a Marine Carotenoid, on Mycobacterium tuberculosis and the Enzymes Implicated in Its Cell Wall: A Link Between Mycobacterial Infection and Autoimmune Diseases
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62157124%3A16370%2F19%3A43877826" target="_blank" >RIV/62157124:16370/19:43877826 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/1660-3397/17/11/641/htm" target="_blank" >https://www.mdpi.com/1660-3397/17/11/641/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/md17110641" target="_blank" >10.3390/md17110641</a>
Alternative languages
Result language
angličtina
Original language name
A Microbiological, Toxicological, and Biochemical Study of the Effects of Fucoxanthin, a Marine Carotenoid, on Mycobacterium tuberculosis and the Enzymes Implicated in Its Cell Wall: A Link Between Mycobacterial Infection and Autoimmune Diseases
Original language description
This study explored the antitubercular properties of fucoxanthin, a marine carotenoid, against clinical isolates of Mycobacterium tuberculosis (Mtb). Two vital enzymes involved in Mtb cell wall biosynthesis, UDP-galactopyranose mutase (UGM) and arylamine-N-acetyltransferase (TBNAT), were selected as drug targets to reveal the mechanism underlying the antitubercular effect of fucoxanthin. The obtained results showed that fucoxanthin showed a clear bacteriostatic action against the all Mtb strains tested, with minimum inhibitory concentrations (MIC) ranging from 2.8 to 4.1 mikroM, along with a good degree of selectivity index (ranging from 6.1 to 8.9) based on cellular toxicity evaluation compared with standard drug isoniazid (INH). The potent inhibitory actions of fucoxanthin and standard uridine-5'-diphosphate against UGM were recorded to be 98.2% and 99.2%, respectively. TBNAT was potently inactivated by fucoxanthin (half maximal inhibitory concentration (IC50) = 4.8 mikdoM; 99.1% inhibition) as compared to INH (IC50 = 5.9 mikroM; 97.4% inhibition). Further, molecular docking approaches were achieved to endorse and rationalize the biological findings along with envisaging structure-activity relationships. Since the clinical evidence of the last decade has confirmed the correlation between bacterial infections and autoimmune diseases, in this study we have discussed the linkage between infection with Mtb and autoimmune diseases based on previous clinical observations and animal studies. In conclusion, we propose that fucoxanthin could demonstrate great therapeutic value for the treatment of tuberculosis by acting on multiple targets through a bacteriostatic effect as well as by inhibiting UGM and TBNAT. Such outcomes may lead to avoiding or decreasing the susceptibility to autoimmune diseases associated with Mtb infection in a genetically susceptible host.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10606 - Microbiology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Marine Drugs
ISSN
1660-3397
e-ISSN
—
Volume of the periodical
17
Issue of the periodical within the volume
11
Country of publishing house
CH - SWITZERLAND
Number of pages
13
Pages from-to
—
UT code for WoS article
000502262200035
EID of the result in the Scopus database
2-s2.0-85075114349