Physico-Chemical Properties of MgGa Mixed Oxides and Reconstructed Layered Double Hydroxides and Their Performance in Aldol Condensation of Furfural and Acetone
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62243136%3A_____%2F18%3AN0000016" target="_blank" >RIV/62243136:_____/18:N0000016 - isvavai.cz</a>
Alternative codes found
RIV/00216275:25310/18:39912580 RIV/60461373:22310/18:43915547 RIV/60461373:22320/18:43915547 RIV/60461373:22350/18:43915547
Result on the web
<a href="https://doi.org/10.3389/fchem.2018.00176" target="_blank" >https://doi.org/10.3389/fchem.2018.00176</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fchem.2018.00176" target="_blank" >10.3389/fchem.2018.00176</a>
Alternative languages
Result language
angličtina
Original language name
Physico-Chemical Properties of MgGa Mixed Oxides and Reconstructed Layered Double Hydroxides and Their Performance in Aldol Condensation of Furfural and Acetone
Original language description
MgGa layered double hydroxides (Mg/Ga = 2–4) were synthesized and used for the preparation of MgGa mixed oxides and reconstructed hydrotalcites. The properties of the prepared materials were examined by physico-chemical methods (XRD, TGA, NH3-TPD, CO2-TPD, SEM, and DRIFT) and tested in aldol condensation of furfural and acetone. The as-prepared phase-pure MgGa samples possessed hydrotalcite structure, and their calcination resulted in mixed oxides with MgO structure with a small admixture phase characterized by a reflection at 2? ? 36.0°. The interaction of MgGa mixed oxides with pure water resulted in reconstruction of the HTC structure already after 15 s of the rehydration with maximum crystallinity achieved after 60 s. TGA-MS experiments proved a substantial decrease in carbonates in all rehydrated samples compared with their as-prepared counterparts. This allowed suggesting presence of interlayer hydroxyls in the samples. Acido-basic properties of MgGa mixed oxides determined by TPD technique did not correlate with Mg/Ga ratio which was explained by the specific distribution of Ga atoms on the external surface of the samples. CO2-TPD method was also used to evaluate the basic properties of the reconstructed MgGa samples. In these experiments, an intensive peak at T = 450°C on CO2-TPD curve was attributed to the decomposition of carbonates newly formed by CO2 interaction with interlayer carbonates rather than to CO2 desorption from basic sites. Accordingly, CO2-TPD method quantitatively characterized the interlayer hydroxyls only indirectly. Furfural conversion on reconstructed MgGa materials was much larger compared with MgGa mixed oxides confirming that Bronsted basic sites in MgGa catalysts, like MgAl catalysts, were active in the reaction. Mg/Ga ratio in mixed oxides influenced product selectivity which was explained by the difference in textural properties of the samples. In contrast, Mg/Ga ratio in reconstructed catalysts had practically no effect on the composition of reaction products suggesting that the basic sites in these catalysts acted similarly in aldol condensation of acetone with furfural. It was concluded that the properties of MgGa samples resembled in a great extent those of MgAl hydrotalcite-based materials and demonstrated their potential as catalysts for base-catalyzed reactions.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
20402 - Chemical process engineering
Result continuities
Project
<a href="/en/project/GA15-21817S" target="_blank" >GA15-21817S: Analysis of the structure/activity relationship of Mg/Al, Ca/Al and Zn/Al mixed oxides in aldol condensation and transesterification reactions</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Frontiers in Chemistry
ISSN
2296-2646
e-ISSN
—
Volume of the periodical
2018
Issue of the periodical within the volume
6
Country of publishing house
CH - SWITZERLAND
Number of pages
17
Pages from-to
1 - 17
UT code for WoS article
000432920200001
EID of the result in the Scopus database
2-s2.0-85048245995