All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Characterization of Modified Natural Minerals and Rocks for Possible Adsorption and Catalytic Use

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62243136%3A_____%2F20%3AN0000032" target="_blank" >RIV/62243136:_____/20:N0000032 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1420-3049/25/21/4989/htm" target="_blank" >https://www.mdpi.com/1420-3049/25/21/4989/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/molecules25214989" target="_blank" >10.3390/molecules25214989</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Characterization of Modified Natural Minerals and Rocks for Possible Adsorption and Catalytic Use

  • Original language description

    This study focused on natural materials such as clinoptilolite (CLI), metakaolin (MK), marlstone (MRL) and phonolite (PH). Clinoptilolite is one of the most known and common natural minerals (zeolites) with a unique porous structure, metakaolin is calcined kaolin clay, marlstone is a sedimentary rock and phonolite is an igneous rock composed of alkali feldspar and other minerals. These natural materials are mainly used in the building industry (additions for concrete mixtures, production of paving, gravels) or for water purification, but the modification of their chemical, textural and mechanical properties makes these materials potentially usable in other industries, especially in the chemical industry. The modification of these natural materials and rocks was carried out by leaching using 0.1 M HCl (D1 samples) and then using 3 M HCl (D2 samples). This treatment could be an effective tool to modify the structure and composition of these materials. Properties of modified materials were determined by N2 physisorption, Hg porosimetry, temperature programmed desorption of ammonia (NH3-TPD), X-ray fluorescence (XRF), X-ray powder diffraction (XRD), diffuse reflectance infrared Fourier transform (DRIFT) and CO2 adsorption using thermogravimetric analysis (TGA). The results of N2 physisorption measurements showed that that the largest increase of specific surface area was for clinoptilolite leached using 3M HCl. There was also a significant increase of the micropore volume in the D2 samples. The only exception was marlstone, where the volume of micropores was zero even in the leached sample. Clinoptilolite had the highest acidity and sorption capacity of CO2. TGA showed that the amount of CO2 adsorbed was not significantly related to the increase in specific surface area and the opening of micropores. Hg porosimetry showed that acid leaching using 0.1 M HCl and 3 M HCl resulted in a significant increase in the macropore volume in phonolite, and during leaching using 3M HCl there was an increase of the mesopore volume. From the better properties, cost-efficient and environmental points of view, the use of these materials could be an interesting solution for catalytic and sorption applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    20400 - Chemical engineering

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    MDPI Molecules

  • ISSN

    1420-3049

  • e-ISSN

  • Volume of the periodical

    25

  • Issue of the periodical within the volume

    21

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    15

  • Pages from-to

    4989-5004

  • UT code for WoS article

  • EID of the result in the Scopus database