Characterization of Modified Natural Minerals and Rocks for Possible Adsorption and Catalytic Use
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62243136%3A_____%2F20%3AN0000032" target="_blank" >RIV/62243136:_____/20:N0000032 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/1420-3049/25/21/4989/htm" target="_blank" >https://www.mdpi.com/1420-3049/25/21/4989/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/molecules25214989" target="_blank" >10.3390/molecules25214989</a>
Alternative languages
Result language
angličtina
Original language name
Characterization of Modified Natural Minerals and Rocks for Possible Adsorption and Catalytic Use
Original language description
This study focused on natural materials such as clinoptilolite (CLI), metakaolin (MK), marlstone (MRL) and phonolite (PH). Clinoptilolite is one of the most known and common natural minerals (zeolites) with a unique porous structure, metakaolin is calcined kaolin clay, marlstone is a sedimentary rock and phonolite is an igneous rock composed of alkali feldspar and other minerals. These natural materials are mainly used in the building industry (additions for concrete mixtures, production of paving, gravels) or for water purification, but the modification of their chemical, textural and mechanical properties makes these materials potentially usable in other industries, especially in the chemical industry. The modification of these natural materials and rocks was carried out by leaching using 0.1 M HCl (D1 samples) and then using 3 M HCl (D2 samples). This treatment could be an effective tool to modify the structure and composition of these materials. Properties of modified materials were determined by N2 physisorption, Hg porosimetry, temperature programmed desorption of ammonia (NH3-TPD), X-ray fluorescence (XRF), X-ray powder diffraction (XRD), diffuse reflectance infrared Fourier transform (DRIFT) and CO2 adsorption using thermogravimetric analysis (TGA). The results of N2 physisorption measurements showed that that the largest increase of specific surface area was for clinoptilolite leached using 3M HCl. There was also a significant increase of the micropore volume in the D2 samples. The only exception was marlstone, where the volume of micropores was zero even in the leached sample. Clinoptilolite had the highest acidity and sorption capacity of CO2. TGA showed that the amount of CO2 adsorbed was not significantly related to the increase in specific surface area and the opening of micropores. Hg porosimetry showed that acid leaching using 0.1 M HCl and 3 M HCl resulted in a significant increase in the macropore volume in phonolite, and during leaching using 3M HCl there was an increase of the mesopore volume. From the better properties, cost-efficient and environmental points of view, the use of these materials could be an interesting solution for catalytic and sorption applications.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
20400 - Chemical engineering
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MDPI Molecules
ISSN
1420-3049
e-ISSN
—
Volume of the periodical
25
Issue of the periodical within the volume
21
Country of publishing house
CH - SWITZERLAND
Number of pages
15
Pages from-to
4989-5004
UT code for WoS article
—
EID of the result in the Scopus database
—