All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

CoMn Catalysts Derived from Hydrotalcite-Like Precursors for Direct Conversion of Syngas to Fuel Range Hydrocarbons

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62243136%3A_____%2F20%3AN0000042" target="_blank" >RIV/62243136:_____/20:N0000042 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2073-4344/10/8/813/htm" target="_blank" >https://www.mdpi.com/2073-4344/10/8/813/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/catal10080813" target="_blank" >10.3390/catal10080813</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    CoMn Catalysts Derived from Hydrotalcite-Like Precursors for Direct Conversion of Syngas to Fuel Range Hydrocarbons

  • Original language description

    Two different groups of CoMn catalysts derived from hydrotalcite-like precursors were prepared through the co-precipitation method, and their performance in the direct production of gasoline and jet fuel range hydrocarbons through Fischer–Tropsch (FT) synthesis was evaluated in a batch autoclave reactor at 240 °C and 7 MPa and H2/CO of 2. The physicochemical properties of the prepared catalysts were investigated and characterized using different characterization techniques. Catalyst performance was significantly affected by the catalyst preparation method. The crystalline phase of the catalyst prepared using KOH contained Co3O4 and some Co2MnO4.5 spinels, with a lower reducibility and catalytic activity than cobalt oxide. The available cobalt active sites are responsible for the chain growth, and the accessible acid sites are responsible for the cracking and isomerization. The catalysts prepared using KOH + K2CO3 mixture as a precipitant agent exhibited a high selectivity of 51–61% for gasoline (C5–C10) and 30–50% for jet fuel (C8–C16) range hydrocarbons compared with catalysts precipitated by KOH. The CoMn-HTC-III catalyst with the highest number of available acid sites showed the highest selectivity to C5–C10 hydrocarbons, which demonstrates that a high Bronsted acidity leads to the high degree of cracking of FT products. The CO conversion did not significantly change, and it was around 35–39% for all catalysts. Owing to the poor activity in the water-gas shift reaction, CO2 formation was less than 2% in all the catalysts.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20400 - Chemical engineering

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Catalysts

  • ISSN

    2073-4344

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    17

  • Pages from-to

    1-17

  • UT code for WoS article

    000564681500001

  • EID of the result in the Scopus database