Classification Using Genetic Programming
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F00%3A5503" target="_blank" >RIV/62690094:18450/00:5503 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Classification Using Genetic Programming
Original language description
The aim of the paper is to demonstrate that genetic programming can be very easily exploited for induction of decision trees. Moreover, we show that by a proper selection of fitness function we can quite simply influence the process of decision trees evolution so that simpler (and thus more comprehensible) decision trees are preferred. To demonstrate the power of genetic programming in this area and to bring out some results the well-known iris classification example is utilised. Our results are then compared with the ones acquired on the same data set using commonly available commercial products.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2000
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proc. of the 6th International Conference on Soft Computing
ISBN
80-214-1609-2
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
—
Publisher name
TU Brno
Place of publication
Brno
Event location
—
Event date
—
Type of event by nationality
—
UT code for WoS article
—