Software Tools for ROC and AUC Estimates
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F03%3A00000620" target="_blank" >RIV/62690094:18450/03:00000620 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Software Tools for ROC and AUC Estimates
Original language description
Discrimination and classification are important tasks that enable to solve the problem of allocation objects into one of the predefined classes. This paper concentrates on the problem of discrimination between two populations (groups) of objects. ROC curve is recommended here as a meas-ure of the separation ability of different classification models when conditions of classification change. ROC can be used for description of predictive properties of different classification models. An overview and comparison of the software tools for ROC and AUC analysis are presented here. Results from analysis of the performance of different models for good and bad loans prediction (data for simulated - fictive bank) are used as an illustrative example.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 21th International Conference Mathematical Methods in Economics 2003
ISBN
80-213-1046-4
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
238-243
Publisher name
Czech University of Agriculture in Prague
Place of publication
Praha
Event location
Praha
Event date
—
Type of event by nationality
—
UT code for WoS article
—