Max-plus algebra and its application in spreading of information
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F12%3A50000465" target="_blank" >RIV/62690094:18450/12:50000465 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Max-plus algebra and its application in spreading of information
Original language description
In this paper circulant matrices in max-plus algebra are presented. Circulant matrices are special form of matrices which are entered by vector of inputs. For special types of matrices such as circulant matrices, the computation can often be performed inthe simpler way than in the general case. The so-called max-plus algebra is useful for investigation of discrete events systems and the sequence of states in discrete time corresponds to powers of matrices in max-plus algebra. The eigenproblem for max-plus matrices describes the steady state of the system. Max-plus algebra has been intensively studied by many authors, see e.g. (Cunningham-Green, Gavalec, Plavka, Zimmerman). Max-plus algebra can solve the problem when looking for a steady system statesshifted in time. Therefore, this article focuses on possible applications of max-plus artificial reverberation.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA402%2F09%2F0405" target="_blank" >GA402/09/0405: Development of Non-standard Optimization Methods and their Applications in Economy and Management</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Mathematical and computational methods in science and engineering (MACMESE 2012)
ISBN
978-1-61804-117-3
ISSN
2227-4588
e-ISSN
—
Number of pages
4
Pages from-to
188-191
Publisher name
World scientific and engineering academy and society
Place of publication
Athens
Event location
Sliema
Event date
Sep 7, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—