Eigenspace of a three-dimensional max-Lukasiewicz fuzzy matrix
Result description
The eigenspace of a three-dimensional fuzzy matrix in max-Lukasiewicz algebra is investigated. Necessary and sufficient conditions are shown under which the eigenspace restricted to increasing eigenvectors of a given matrix is non-empty, and the structure of the increasing eigenspace is described. Complete characterization of the general eigenspace structure for arbitrary three-dimensional fuzzy matrix, using simultaneous row and column permutations of the matrix is presented, with numerical examples.
Keywords
monotone eigenvectoreigenproblemmax-t fuzzy algebraLukasiewicz triangular norm
The result's identifiers
Result code in IS VaVaI
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Eigenspace of a three-dimensional max-Lukasiewicz fuzzy matrix
Original language description
The eigenspace of a three-dimensional fuzzy matrix in max-Lukasiewicz algebra is investigated. Necessary and sufficient conditions are shown under which the eigenspace restricted to increasing eigenvectors of a given matrix is non-empty, and the structure of the increasing eigenspace is described. Complete characterization of the general eigenspace structure for arbitrary three-dimensional fuzzy matrix, using simultaneous row and column permutations of the matrix is presented, with numerical examples.
Czech name
—
Czech description
—
Classification
Type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Kybernetika
ISSN
0023-5954
e-ISSN
—
Volume of the periodical
48
Issue of the periodical within the volume
2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
20
Pages from-to
309-328
UT code for WoS article
000303851300011
EID of the result in the Scopus database
—
Basic information
Result type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP
IN - Informatics
Year of implementation
2012