Steady states of max-Łukasiewicz fuzzy systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50013441" target="_blank" >RIV/62690094:18450/17:50013441 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0165011417300659" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0165011417300659</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2017.02.005" target="_blank" >10.1016/j.fss.2017.02.005</a>
Alternative languages
Result language
angličtina
Original language name
Steady states of max-Łukasiewicz fuzzy systems
Original language description
The paper gives a systematic characterization of the eigenspaces in a max-t algebra, where t is the Łukasiewicz t-norm. A max-Łukasiewicz fuzzy algebra can be used for the description of the states of discrete-event systems. The states can represent a balance between the resources expended during the run of a system (for example fuel or money). The classification of max-Łukasiewicz eigenspaces is described and illustrated by two- and three-dimensional examples: in this case it is possible to accompany the example with graphs. However, the description of the eigenspaces for higher dimensions is also outlined.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy sets and systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
Neuveden
Issue of the periodical within the volume
325
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
58-68
UT code for WoS article
000411303800006
EID of the result in the Scopus database
2-s2.0-85014594823