Twitter hate aspect extraction using association analysis and dictionary-based approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50013660" target="_blank" >RIV/62690094:18450/17:50013660 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3233/978-1-61499-800-6-641" target="_blank" >http://dx.doi.org/10.3233/978-1-61499-800-6-641</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/978-1-61499-800-6-641" target="_blank" >10.3233/978-1-61499-800-6-641</a>
Alternative languages
Result language
angličtina
Original language name
Twitter hate aspect extraction using association analysis and dictionary-based approach
Original language description
Recent research regarding hate speech is in the domain of social sciences and psychology. From these trends, the dissemination of hate speech and antagonistic content in social media has not been extensively studies from the perspective of sentiment analysis. In this paper, the main studies concerned about aspect-based sentiment analysis through twitter as the most popular social media communication in the world as they have 313 million active users worldwide. This paper initiate to address the shortcomings of implied aspects specific for hate crime domain. The expected beneficial hate aspects can be extracted from twitter based on combination of both analysis. The evaluation with researcher's own Hate Crime Twitter Sentiment (HCTS) dataset and also Hate Speech Twitter Datasoft (HSTD) was shown that the proposed approach is effective and produces significantly better results than baselines method.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Frontiers in Artificial Intelligence and Applications
ISBN
978-1-61499-799-3
ISSN
0922-6389
e-ISSN
neuvedeno
Number of pages
11
Pages from-to
641-651
Publisher name
IOS press
Place of publication
Amsterdam
Event location
Kitakyushu; Japan
Event date
Sep 26, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—