All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Twitter hate aspect extraction using association analysis and dictionary-based approach

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50013660" target="_blank" >RIV/62690094:18450/17:50013660 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.3233/978-1-61499-800-6-641" target="_blank" >http://dx.doi.org/10.3233/978-1-61499-800-6-641</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3233/978-1-61499-800-6-641" target="_blank" >10.3233/978-1-61499-800-6-641</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Twitter hate aspect extraction using association analysis and dictionary-based approach

  • Original language description

    Recent research regarding hate speech is in the domain of social sciences and psychology. From these trends, the dissemination of hate speech and antagonistic content in social media has not been extensively studies from the perspective of sentiment analysis. In this paper, the main studies concerned about aspect-based sentiment analysis through twitter as the most popular social media communication in the world as they have 313 million active users worldwide. This paper initiate to address the shortcomings of implied aspects specific for hate crime domain. The expected beneficial hate aspects can be extracted from twitter based on combination of both analysis. The evaluation with researcher&apos;s own Hate Crime Twitter Sentiment (HCTS) dataset and also Hate Speech Twitter Datasoft (HSTD) was shown that the proposed approach is effective and produces significantly better results than baselines method.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Frontiers in Artificial Intelligence and Applications

  • ISBN

    978-1-61499-799-3

  • ISSN

    0922-6389

  • e-ISSN

    neuvedeno

  • Number of pages

    11

  • Pages from-to

    641-651

  • Publisher name

    IOS press

  • Place of publication

    Amsterdam

  • Event location

    Kitakyushu; Japan

  • Event date

    Sep 26, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article