All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Segmentation based on gabor transformation with machine learning: Modeling of retinal blood vessels system from retcam images and tortuosity extraction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50014267" target="_blank" >RIV/62690094:18450/17:50014267 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27240/17:10237654

  • Result on the web

    <a href="http://dx.doi.org/10.3233/978-1-61499-800-6-270" target="_blank" >http://dx.doi.org/10.3233/978-1-61499-800-6-270</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3233/978-1-61499-800-6-270" target="_blank" >10.3233/978-1-61499-800-6-270</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Segmentation based on gabor transformation with machine learning: Modeling of retinal blood vessels system from retcam images and tortuosity extraction

  • Original language description

    In a field of the clinical ophthalmology, an analysis of the retinal blood vessels is one of the major assessments in the retinal system. Retinal blood vessels system is clinically imagined either by the fundus camera or retinal probe (RetCam 3 system). The tortuosity is important parameter assessing blood vessel curvature. Unfortunately, this parameter is usually subjectively estimated in the retinal image analysis. The main aim of the analysis is an automatic segmentation with consequent extraction and modelling of the retinal blood vessels system from RetCam 3 in the form of the binary model. Segmentation algorithm utilizes the Gabor wavelet transformation (GT) giving segmentation results for individual parameters setting. Consequent retinal blood vessels classification is carried out on the base of the linear regression with gold standard. The gold standard represents a manually labelled segmentation by the ophthalmologic experts. Binary segmentation model precisely approximates blood vessels area from other structures. This model allows for the tortuosity extraction in a form of the gradient image where each blood vessel element is described by its steepness.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA17-03037S" target="_blank" >GA17-03037S: Investment evaluation of medical device development</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Frontiers in Artificial Intelligence and Applications

  • ISBN

    978-1-61499-799-3

  • ISSN

    0922-6389

  • e-ISSN

    neuvedeno

  • Number of pages

    14

  • Pages from-to

    270-283

  • Publisher name

    IOS Press

  • Place of publication

    Kitakyushu

  • Event location

    Kitakyushu; Japan

  • Event date

    Sep 26, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article