Segmentation based on gabor transformation with machine learning: Modeling of retinal blood vessels system from retcam images and tortuosity extraction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50014267" target="_blank" >RIV/62690094:18450/17:50014267 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27240/17:10237654
Result on the web
<a href="http://dx.doi.org/10.3233/978-1-61499-800-6-270" target="_blank" >http://dx.doi.org/10.3233/978-1-61499-800-6-270</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/978-1-61499-800-6-270" target="_blank" >10.3233/978-1-61499-800-6-270</a>
Alternative languages
Result language
angličtina
Original language name
Segmentation based on gabor transformation with machine learning: Modeling of retinal blood vessels system from retcam images and tortuosity extraction
Original language description
In a field of the clinical ophthalmology, an analysis of the retinal blood vessels is one of the major assessments in the retinal system. Retinal blood vessels system is clinically imagined either by the fundus camera or retinal probe (RetCam 3 system). The tortuosity is important parameter assessing blood vessel curvature. Unfortunately, this parameter is usually subjectively estimated in the retinal image analysis. The main aim of the analysis is an automatic segmentation with consequent extraction and modelling of the retinal blood vessels system from RetCam 3 in the form of the binary model. Segmentation algorithm utilizes the Gabor wavelet transformation (GT) giving segmentation results for individual parameters setting. Consequent retinal blood vessels classification is carried out on the base of the linear regression with gold standard. The gold standard represents a manually labelled segmentation by the ophthalmologic experts. Binary segmentation model precisely approximates blood vessels area from other structures. This model allows for the tortuosity extraction in a form of the gradient image where each blood vessel element is described by its steepness.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA17-03037S" target="_blank" >GA17-03037S: Investment evaluation of medical device development</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Frontiers in Artificial Intelligence and Applications
ISBN
978-1-61499-799-3
ISSN
0922-6389
e-ISSN
neuvedeno
Number of pages
14
Pages from-to
270-283
Publisher name
IOS Press
Place of publication
Kitakyushu
Event location
Kitakyushu; Japan
Event date
Sep 26, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—