TRANSACTION DATA BASED HOTEL CUSTOMER SEGMENTATION
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50015400" target="_blank" >RIV/62690094:18450/17:50015400 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
TRANSACTION DATA BASED HOTEL CUSTOMER SEGMENTATION
Original language description
Customer segmentation plays crucial role in hospitality marketing. Identification of the right customer segments allows hotel managers to create the most effective marketing strategies. Transactions are great source of behavioraldata that can be used in market segmentation. The goal of this paper is to run cluster analysis over transactional data to identify customer segment, identify the best onesof themand propose suitable strategy for them. Used data wereexported from channel management tool and then processed using several non-hierarchical clustering methods of IBM SPSS tool (K-means and TwoStep Clustering). The results showthat using transaction data for behavioralsegmentation can lead to proper segment identification when strategies are being built.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
50204 - Business and management
Result continuities
Project
—
Continuities
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of 10th International Scientific Conferrence Karviná Ph.D. Conference on Business and Economics
ISBN
978-80-7510-265-2
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
74-82
Publisher name
Slezská univerzita v Opavě
Place of publication
Karviná
Event location
Karviná
Event date
Nov 1, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000583813800007