Analysis on Hybrid Dominance-Based Rough Set Parameterization Using Private Financial Initiative Unitary Charges Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F18%3A50014745" target="_blank" >RIV/62690094:18450/18:50014745 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-319-75417-8_30" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-75417-8_30</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-75417-8_30" target="_blank" >10.1007/978-3-319-75417-8_30</a>
Alternative languages
Result language
angličtina
Original language name
Analysis on Hybrid Dominance-Based Rough Set Parameterization Using Private Financial Initiative Unitary Charges Data
Original language description
This paper evaluates the capability of the hybrid parameter reduction approach in handling private financial initiative (PFI) unitary charges data to increase the classification performance. The objective of this study is to analyse the performance of the proposed hybrid parameter reduction approach in assisting the neural network classifier to classify complex data sets that might contain uncertain and inconsistent problems. The proposed hybrid parameter reduction approach consists of several methods that will be executed during the data analysis process. Slicing technique and dominance-based rough set approach (DRSA) are the two techniques that play important roles in the proposed parameter reduction process. In order, to analyse the performance of the proposed work, the PFI data that covers all regions in Malaysia is applied in the experimental works. Besides, several standard data sets have also been used to validate the obtained results. The results reveal that the hybrid approach has successfully assisted the classifier in the classification process.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2018, PT I
ISBN
978-3-319-75417-8
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
11
Pages from-to
318-328
Publisher name
SPRINGER INTERNATIONAL PUBLISHING AG
Place of publication
CHAM
Event location
Dong Hoi
Event date
Mar 19, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000432717700030