All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Analysis on Hybrid Dominance-Based Rough Set Parameterization Using Private Financial Initiative Unitary Charges Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F18%3A50014745" target="_blank" >RIV/62690094:18450/18:50014745 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-319-75417-8_30" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-75417-8_30</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-75417-8_30" target="_blank" >10.1007/978-3-319-75417-8_30</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Analysis on Hybrid Dominance-Based Rough Set Parameterization Using Private Financial Initiative Unitary Charges Data

  • Original language description

    This paper evaluates the capability of the hybrid parameter reduction approach in handling private financial initiative (PFI) unitary charges data to increase the classification performance. The objective of this study is to analyse the performance of the proposed hybrid parameter reduction approach in assisting the neural network classifier to classify complex data sets that might contain uncertain and inconsistent problems. The proposed hybrid parameter reduction approach consists of several methods that will be executed during the data analysis process. Slicing technique and dominance-based rough set approach (DRSA) are the two techniques that play important roles in the proposed parameter reduction process. In order, to analyse the performance of the proposed work, the PFI data that covers all regions in Malaysia is applied in the experimental works. Besides, several standard data sets have also been used to validate the obtained results. The results reveal that the hybrid approach has successfully assisted the classifier in the classification process.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2018, PT I

  • ISBN

    978-3-319-75417-8

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    11

  • Pages from-to

    318-328

  • Publisher name

    SPRINGER INTERNATIONAL PUBLISHING AG

  • Place of publication

    CHAM

  • Event location

    Dong Hoi

  • Event date

    Mar 19, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000432717700030