All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multi-Biometric System Based on Cutting-Edge Equipment for Experimental Contactless Verification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F19%3A50015869" target="_blank" >RIV/62690094:18450/19:50015869 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1424-8220/19/17/3709" target="_blank" >https://www.mdpi.com/1424-8220/19/17/3709</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/s19173709" target="_blank" >10.3390/s19173709</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multi-Biometric System Based on Cutting-Edge Equipment for Experimental Contactless Verification

  • Original language description

    Biometric verification methods have gained significant popularity in recent times, which has brought about their extensive usage. In light of theoretical evidence surrounding the development of biometric verification, we proposed an experimental multi-biometric system for laboratory testing. First, the proposed system was designed such that it was able to identify and verify a user through the hand contour, and blood flow (blood stream) at the upper part of the hand. Next, we detailed the hard and software solutions for the system. A total of 40 subjects agreed to be a part of data generation team, which produced 280 hand images. The core of this paper lies in evaluating individual metrics, which are functions of frequency comparison of the double type faults with the EER (Equal Error Rate) values. The lowest value was measured for the case of the modified Hausdorff distance metric - Maximally Helicity Violating (MHV). Furthermore, for the verified biometric characteristics (Hamming distance and MHV), appropriate and suitable metrics have been proposed and experimented to optimize system precision. Thus, the EER value for the designed multi-biometric system in the context of this work was found to be 5%, which proves that metrics consolidation increases the precision of the multi-biometric system. Algorithms used for the proposed multi-biometric device shows that the individual metrics exhibit significant accuracy but perform better on consolidation, with a few shortcomings.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF18_069%2F0010054" target="_blank" >EF18_069/0010054: IT4Neuro(degeneration)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SENSORS

  • ISSN

    1424-8220

  • e-ISSN

  • Volume of the periodical

    19

  • Issue of the periodical within the volume

    17

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    23

  • Pages from-to

    "Article number 3709"

  • UT code for WoS article

    000486861900079

  • EID of the result in the Scopus database

    2-s2.0-85071709509