Levenberg-Marquardt Variants in Chrominance-Based Skin Tissue Detection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F19%3A50015941" target="_blank" >RIV/62690094:18450/19:50015941 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-17935-9_9" target="_blank" >http://dx.doi.org/10.1007/978-3-030-17935-9_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-17935-9_9" target="_blank" >10.1007/978-3-030-17935-9_9</a>
Alternative languages
Result language
angličtina
Original language name
Levenberg-Marquardt Variants in Chrominance-Based Skin Tissue Detection
Original language description
Levenberg-Marquardt method is a very useful tool for solving nonlinear curve fitting problems; while it is also a very promising alternative of weight adjustment in feed forward neural networks. Forcing the Hessian matrix to stay positive definite, the parameter λ also turns the algorithm into the well-known variations: steepest-descent and Gauss-Newton. Given the computation time, the results achieved by these methods surely differ while minimizing the sum of squares of errors and with an acceptable accuracy rate in skin tissue recognition. Therefore in this paper, we propose the implementation of these variations in network training by a set of tissue samples borrowed from SFA human skin database. The RGB images taken from the set are converted into YCbCr color space and the networks are individually trained by these methods to create weight arrays minimizing the error squares between the pixel values and the function output. Consisting of hands on computer keyboards, the images are analyzed to find skin tissues for achieving high accuracy with low computation time and for comparison of the methods.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-030-17934-2
ISSN
0302-9743
e-ISSN
—
Number of pages
12
Pages from-to
87-98
Publisher name
Springer Verlag
Place of publication
Berlin
Event location
Granada
Event date
Oct 8, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—