All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Public Cloud Kubernetes Storage Performance Analysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F19%3A50016283" target="_blank" >RIV/62690094:18450/19:50016283 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-28374-2_56" target="_blank" >http://dx.doi.org/10.1007/978-3-030-28374-2_56</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-28374-2_56" target="_blank" >10.1007/978-3-030-28374-2_56</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Public Cloud Kubernetes Storage Performance Analysis

  • Original language description

    Public cloud solutions offer a lot of possibilities for application configuration. The well-chosen architecture and configuration are important for the correct and efficient application run and affect performance and also user friendliness. If the application runs on top of Kubernetes cluster on public cloud solutions (e.g. Amazon Elastic Container Service for Kubernetes, Google Kubernetes Engine, Azure Kubernetes Service) it is necessary, among other things, also decide what data storage to use and this decision should be based on the workload type and requirements for other application and storage parameters. However, it is not easy to say which technology is the best or to use some simple test to get this result or a similar one. The main analysis and tests in this paper have been done on Microsoft’s Azure Kubernetes Service where have been tested these storage back-ends: AKS native storage class, AWS cloud volume mapped into the instance (via Azure hostPath with attached Azure managed disk), OpenEBS, Portworx, Gluster with Heketi and Ceph with Rook.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computational Collective Intelligence

  • ISBN

    978-3-030-28373-5

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    12

  • Pages from-to

    649-660

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Hendaye

  • Event date

    Sep 4, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article