All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The impact of anonymization on the geosocial network metrics used in socio-economic analysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50016714" target="_blank" >RIV/62690094:18450/20:50016714 - isvavai.cz</a>

  • Result on the web

    <a href="http://doi.org/10.36689/uhk/hed/2020-01-062" target="_blank" >http://doi.org/10.36689/uhk/hed/2020-01-062</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.36689/uhk/hed/2020-01-062" target="_blank" >10.36689/uhk/hed/2020-01-062</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The impact of anonymization on the geosocial network metrics used in socio-economic analysis

  • Original language description

    The expansion of mobile devices equipped with GPS (Global Positioning System) locators corresponds to the development of the highly customized location-based services including geosocial networks. The usage of customized location-based services positively effects many aspects of users’ daily routines from travelling to choosing the best restaurant. On the other hand, providing customized services relates to collecting and storing large amount of users’ information and gives rise to many privacy-preserving issues. In this paper, we discuss the privacy concerns connected with publishing geosocial network datasets and the impact of the anonymization on the utility of the geosocial network dataset. Considering the importance of the geosocial network for the socioeconomic analysis, we put arguments for the importance of geosocial network anonymization before exploiting the dataset. We apply the clustering anonymization methods according to geographical coordinates and the values of location entropy on the real-world data to prevent the location privacy leakage. Afterwards, we compare the network metrics in the original and anonymized real-world datasets and measure the impact of the anonymization on the metric values.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the international scientific conference Hradec Economic Days 2020

  • ISBN

    978-80-7435-776-3

  • ISSN

    2464-6059

  • e-ISSN

    2464-6067

  • Number of pages

    8

  • Pages from-to

    543-550

  • Publisher name

    Univerzita Hradec Králové

  • Place of publication

    Hradec Králové

  • Event location

    Hradec Králové

  • Event date

    Apr 2, 2020

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article

    000568108700060