All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Forecasting of FOREX Price Trend Using Recurrent Neural Network - Long Short-term Memory

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50016858" target="_blank" >RIV/62690094:18450/20:50016858 - isvavai.cz</a>

  • Result on the web

    <a href="https://digilib.uhk.cz/bitstream/handle/20.500.12603/212/Dobrovolny%20et%20al%20%281%29.pdf?sequence=1&isAllowed=y" target="_blank" >https://digilib.uhk.cz/bitstream/handle/20.500.12603/212/Dobrovolny%20et%20al%20%281%29.pdf?sequence=1&isAllowed=y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.36689/uhk/hed/2020-01-011" target="_blank" >10.36689/uhk/hed/2020-01-011</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Forecasting of FOREX Price Trend Using Recurrent Neural Network - Long Short-term Memory

  • Original language description

    Algorithms of neural networks (NN) can search and represent both structured and not structured data, we employ then on financial time-series. This paper describes the use of Long short-term memory (LSTM) for FOREX pair EUR/USD price prediction. Aim of the paper is to test and proposes the best time block to predict based on a daily FOREX data. We employ the mean of absolute errors and the least mean squared errors to assess prediction results in order to find the time block. We tested time blocks from ten to fifty-eight days and 100 or 300 epochs. Training dataset contained daily exchange rate data from 1.4.1971 until 9.5.2019. The best performing network has been trained for 30-day period and 100 epochs. This paper also describes the effect of training for a high number of epochs.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Hradec economic days 2020/1

  • ISBN

    978-80-7435-776-3

  • ISSN

    2464-6059

  • e-ISSN

    2464-6067

  • Number of pages

    9

  • Pages from-to

    95-103

  • Publisher name

    Gaudeamus

  • Place of publication

    Hradec Králové

  • Event location

    Hradec Králové

  • Event date

    Apr 2, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000568108700011