Anti-Obfuscation Techniques: Recent Analysis of Malware Detection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F22%3A50019519" target="_blank" >RIV/62690094:18450/22:50019519 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3233/FAIA220249" target="_blank" >http://dx.doi.org/10.3233/FAIA220249</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/FAIA220249" target="_blank" >10.3233/FAIA220249</a>
Alternative languages
Result language
angličtina
Original language name
Anti-Obfuscation Techniques: Recent Analysis of Malware Detection
Original language description
One of the challenging issues in detecting the malware is that modern stealthy malware prefers to stay hidden during their attacks on our devices and be obfuscated. They can evade antivirus scanners or other malware analysis tools and might attempt to thwart modern detection, including altering the file attributes or performing the action under the pretense of authorized services. Therefore, it's crucial to understand and analyze how malware implements obfuscation techniques to curb these concerns. This paper is dedicated to presenting an analysis of anti-obfuscation techniques for malware detection. Furthermore, an empirical analysis of the performance evaluation of malware detection using machine learning algorithms and the obfuscation techniques was conducted to address the associated issues that might help researchers plan and generate an efficient algorithm for malware detection. © 2022 The authors and IOS Press. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Frontiers in Artificial Intelligence and Applications
ISBN
978-1-64368-316-4
ISSN
0922-6389
e-ISSN
1535-6698
Number of pages
12
Pages from-to
181-192
Publisher name
IOS Press BV
Place of publication
Amsterdam
Event location
Kitakyushu
Event date
Sep 20, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—