All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Novel Cooperative Control Technique for Hybrid AC/DC Smart Microgrid Converters

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020265" target="_blank" >RIV/62690094:18450/23:50020265 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/10005160" target="_blank" >https://ieeexplore.ieee.org/document/10005160</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2023.3234011" target="_blank" >10.1109/ACCESS.2023.3234011</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Novel Cooperative Control Technique for Hybrid AC/DC Smart Microgrid Converters

  • Original language description

    This study proposes a novel technique of cooperative control for a distributed hybrid DC/AC Microgrid (MG) by designing a digital Infinite Impulse Response (IIR) filter-based Proportional-Resonant (PR) current controller. This controller adopts an Adaptive Neuro Fuzzy Inference System (ANFIS) trained by Particle Swarm Optimization (PSO) to control inverter output current while tracking Maximum Power Point (MPP). A hybrid ANFIS-PSO extracts maximum power from both inverter and boost converter-based solar Photovoltaics (PVs) systems quickly and with zero oscillation tracking. The proposed PR controller cancels harmonics while achieving high gain at the resonant frequency (grid frequency). The PR controller offers quick reference signal tracking, grid frequency drift adaptation, easy system design, and no steady-state error. Moreover, this investigation features a PR controller frequency-domain analysis. The proposed technique smooths voltage and improves steady-state and transient responses. Cooperative control is implemented on an IEEE 14-bus MG with distributed communication. The findings indicate that the proposed control technique can regulate MG voltage to obtain a more stable voltage profile. The adopted MG, made up of dispersed resources, is crucial for assessing power flow and quality indicators in a smart power grid. Finally, numerical simulation results are utilized to verify the recommended technique.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

    2169-3536

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    February

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    2164-2181

  • UT code for WoS article

    000912333700001

  • EID of the result in the Scopus database

    2-s2.0-85147214131