All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fine-Grained Sports, Yoga, and Dance Postures Recognition: A Benchmark Analysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020522" target="_blank" >RIV/62690094:18450/23:50020522 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/10177209" target="_blank" >https://ieeexplore.ieee.org/document/10177209</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TIM.2023.3293564" target="_blank" >10.1109/TIM.2023.3293564</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fine-Grained Sports, Yoga, and Dance Postures Recognition: A Benchmark Analysis

  • Original language description

    Human body-pose estimation is a complex problem in computer vision. Recent research interests have been widened specifically on the Sports, Yoga, and Dance (SYD) postures for maintaining health conditions. The SYD pose categories are regarded as a fine-grained image classification task due to the complex movement of body parts. Deep Convolutional Neural Networks (CNNs) have attained significantly improved performance in solving various human body-pose estimation problems. Though decent progress has been achieved in yoga postures recognition using deep learning techniques, fine-grained sports, and dance recognition necessitates ample research attention. However, no benchmark public image dataset with sufficient inter-class and intra-class variations is available yet to address sports and dance postures classification. To solve this limitation, we have proposed two image datasets, one for 102 sport categories and another for 12 dance styles. Two public datasets, Yoga-82 which contains 82 classes and Yoga-107 represents 107 classes are collected for yoga postures. These four SYD datasets are experimented with the proposed deep model, SYD-Net, which integrates a patch-based attention (PbA) mechanism on top of standard backbone CNNs. The PbA module leverages the self-attention mechanism that learns contextual information from a set of uniform and multi-scale patches and emphasizes discriminative features to understand the semantic correlation among patches. Moreover, random erasing data augmentation is applied to improve performance. The proposed SYD-Net has achieved state-of-the-art accuracy on Yoga-82 using five base CNNs. SYD-Net’s accuracy on other datasets is remarkable, implying its efficiency. Our Sports-102 and Dance-12 datasets are publicly available at https://sites.google.com/view/syd-net/home. IEEE

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Transactions on Instrumentation and Measurement

  • ISSN

    0018-9456

  • e-ISSN

    1557-9662

  • Volume of the periodical

    72

  • Issue of the periodical within the volume

    July

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    "Article Number: 5020613"

  • UT code for WoS article

    001036137100010

  • EID of the result in the Scopus database

    2-s2.0-85164738155