All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Improved Indoor Localization Performance Using a Modified Affinity Propagation Clustering Algorithm With Context Similarity Coefficient

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020527" target="_blank" >RIV/62690094:18450/23:50020527 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/10145106" target="_blank" >https://ieeexplore.ieee.org/document/10145106</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2023.3283592" target="_blank" >10.1109/ACCESS.2023.3283592</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Improved Indoor Localization Performance Using a Modified Affinity Propagation Clustering Algorithm With Context Similarity Coefficient

  • Original language description

    The performance of fingerprint-based indoor wireless localization systems (IWL-Ss) can be enhanced using fingerprint clustering. The localization performance of clustered fingerprint-based IWL-Ss is affected by several factors, including choosing the most optimal initial parameters and the appropriate fingerprint similarity measurement metric. The problem of choosing the best initial parameter is solved by using the affinity propagation clustering (APC) algorithm in this paper, which automatically calculates the number of clusters and cluster centroid vectors. However, the choice of fingerprint similarity measure and the selection of the best cluster centroid when there are multiple potential cluster centroids limit the performance of the APC algorithm. To address this issue, this paper proposes modifying the conventional APC (c-APC) algorithm, which will be referred to as the &quot;m-APC algorithm.&quot; The context similarity coefficient (CSC) fingerprint similarity measure replaces the distance-based fingerprint similarity measure used by the c-APC algorithm. Furthermore, the cluster centroids that are generated automatically are replaced by the centroid that is obtained by averaging all fingerprints within a cluster. Using the k-NN localization algorithm and four online fingerprint databases, the performance of the m-APC+CSC algorithm is determined and compared to the c-APC algorithm using cosine, Euclidean, and Shepard distances as fingerprint similarity measures. Based on simulation results, the m-APC algorithm reduced the position root mean square error (RMSE) and mean absolute error (MAE) by about 12% and 8%, respectively, when compared to the c-APC algorithm when both used the CSC as a fingerprint similarity measure. Furthermore, the m-APC+CSC algorithm achieved an 8% and 9%, respectively, position RMSE and MAE reduction over the c-APC algorithm using cosine, Euclidean, and Shepard distances as similarity measurements. The m-APC+CSC algorithm should, however, be used on a reasonably sized fingerprint database with at least four wireless access points (APs) for better localization performance.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

    2169-3536

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    June

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    57341-57348

  • UT code for WoS article

    001012224100001

  • EID of the result in the Scopus database

    2-s2.0-85161568489