A new chaotic map derived from the Hermite-Kronecker-Brioschi characterization of the Bring-Jerrard quintic form
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020626" target="_blank" >RIV/62690094:18450/23:50020626 - isvavai.cz</a>
Result on the web
<a href="https://iopscience.iop.org/article/10.1088/1402-4896/acef6f" target="_blank" >https://iopscience.iop.org/article/10.1088/1402-4896/acef6f</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1402-4896/acef6f" target="_blank" >10.1088/1402-4896/acef6f</a>
Alternative languages
Result language
angličtina
Original language name
A new chaotic map derived from the Hermite-Kronecker-Brioschi characterization of the Bring-Jerrard quintic form
Original language description
The Bring-Jerrard normal form, achieved by Tschirnhaus transformation of a regular quintic, is a reduced type of the general quintic equation with quartic, cubic and quadratic terms omitted. However, the form itself is an equation opposing the mandatory characteristics of the iterative chaotic maps. Given the form represents the fixed-point equations, it is possible to turn it into a map of iterations. Under specific conditions, the quartic map achieved by transformation from the quintic normal form exhibits chaotic behavior for real numbers. Depending on the system parameters, the new map causes period-doubling until a complete chaos within a very short range. Basically, in this paper, we present a new one-dimensional chaotic map derived from the Hermite-Kronecker-Brioschi characterization of the Bring-Jerrard normal form, which exhibits chaotic behavior for negative initial points. We also included the brief analysis of the Bring-Jerrard generalized case which is the parent system of the chaotic map we proposed in this paper. © 2023 IOP Publishing Ltd.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physica scripta
ISSN
0031-8949
e-ISSN
1402-4896
Volume of the periodical
98
Issue of the periodical within the volume
9
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
"Article number: 095245"
UT code for WoS article
001053340300001
EID of the result in the Scopus database
2-s2.0-85169618925