A simulation-based performance evaluation of new generation dynamic shading devices with multi-objective optimization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021465" target="_blank" >RIV/62690094:18450/24:50021465 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S2352710224008908?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352710224008908?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jobe.2024.109322" target="_blank" >10.1016/j.jobe.2024.109322</a>
Alternative languages
Result language
angličtina
Original language name
A simulation-based performance evaluation of new generation dynamic shading devices with multi-objective optimization
Original language description
Shading devices are the integrated components of building envelopes, which are designed to protect interiors from the excessive amount of direct and indirect solar radiation. Blocking the sunlight, these devices reduce the operational cost of cooling systems, which implies an inverse proportionality between the cooling energy consumption and desired thermal comfort. Therefore, in this study, a unique design for dynamic shading devices of an office building, located in the hot and humid climatic region, is proposed and presented from the early stages of the architectural design process. Above all, an innovative parametric model is created using the Grasshopper algorithmic modeling environment with the Honeybee and Ladybug plug-ins to overcome all difficulties of the manual design process. By employing the optimization plug-in of the Grasshopper software named Octopus, a performance evaluation based multi-objective optimization (MOO) method is introduced to find different cell dimensions of the devices for various orientations, south, east and west, of the office building. This research also investigates the potential of the proposed shading devices based on two major performance aspects, reducing the cooling load while increasing the thermal comfort of the office building, located at Bayrakli, Izmir, Turkey, latitude: 38° 27′ 44.00″ N and longitude: 27° 10′ 0.00″ E. The lowest cooling energy consumption is estimated as 8.35 kWh for 22nd of July 12:00 a.m. for the west orientation with the dimension of 100 × 100 cm, among other cell dimensions, which are 50 × 200 cm and 200 × 50 cm. The novelty lies behind the optimization of the conflicting performance features and the design of the new generation dynamic shading devices which would shed light on new shading device era. © 2024 Elsevier Ltd
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20102 - Construction engineering, Municipal and structural engineering
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Building Engineering
ISSN
2352-7102
e-ISSN
2352-7102
Volume of the periodical
90
Issue of the periodical within the volume
August
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
18
Pages from-to
"Article Number: 109322"
UT code for WoS article
001236020200001
EID of the result in the Scopus database
2-s2.0-85191238297