Explainable Machine Learning for Intrusion Detection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021581" target="_blank" >RIV/62690094:18450/24:50021581 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-981-97-4677-4_11" target="_blank" >http://dx.doi.org/10.1007/978-981-97-4677-4_11</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-97-4677-4_11" target="_blank" >10.1007/978-981-97-4677-4_11</a>
Alternative languages
Result language
angličtina
Original language name
Explainable Machine Learning for Intrusion Detection
Original language description
Intrusion detection systems (IDS) are essential tools to maintain robust cybersecurity. Machine learning (ML)-based IDS providespromising results. However, such IDS are recognized as black-box andlack trust and transparency. There is a limited number of explainableIDS (X-IDS). Moreover, several X-IDS used outdated datasets. Somepapers used deep neural network which is computationally expensive.This paper proposes lightweight tree-based X-IDS using a recent IDSdataset. We explore the effectiveness of explainable artificial intelligence(XAI) techniques in increasing ML-based IDS transparency. Four MLalgorithms are employed; viz. LightGBM, random forests, AdaBoost,and XGBoost; to classify a given network flow as benign or malicious.Network flows extracted from the CSE-CIC-IDS2018 dataset are used toevaluate the IDS models. The best F1-score results of 0.979 and 0.978are achieved with LightGBM and XGBoost, respectively. We use SHapleyAdditive exPlanations (SHAP) and Local Model-Agnostic Explanations(LIME) techniques to provide global and local explanations for predictions made by the LightGBM. The obtained explanations in the form ofgraphs provide measurable insights for cybersecurity experts regardingthe most important features that impact the detection of intrusions.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Artificial Intelligence, Theory and Applications
ISBN
978-981-9746-76-7
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
13
Pages from-to
122-134
Publisher name
Springer Nature
Place of publication
Berlín
Event location
Hradec Králové, Czech Republic
Event date
Jul 10, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001315630900011