All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Classification of Datasets Used in Data Anonymization for IoT Environment

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021808" target="_blank" >RIV/62690094:18450/24:50021808 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/10.1007/978-981-97-4677-4_8" target="_blank" >https://link.springer.com/10.1007/978-981-97-4677-4_8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-97-4677-4_8" target="_blank" >10.1007/978-981-97-4677-4_8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Classification of Datasets Used in Data Anonymization for IoT Environment

  • Original language description

    The integration of Internet of Things (IoT) devices in smart cities facilitates the collection, sharing, and analysis of data to optimize city services, enhance residents’ well-being, and enable more efficient decision-making processes. Balancing the benefits of IoT data collection and sharing with the imperative of preserving user privacy involves implementing robust security measures and anonymization techniques to ensure the safety, security, and trustworthiness of IoT technologies. Anonymization techniques enable service providers to collect, store, and share data while preserving user privacy, with various methods applicable across different types. This paper presents a literature review focusing on data anonymization in the IoT environment, aiming to classify datasets used to evaluate newly proposed anonymization methods, examining their types, availability, size, and applicability in research. The study aims to provide insights into the datasets employed in data anonymization research for IoT environments and determine the level of using relational datasets in such studies.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances and Trends in Artificial Intelligence :Theory and Applications

  • ISBN

    978-981-9746-76-7

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    13

  • Pages from-to

    80-92

  • Publisher name

    Springer

  • Place of publication

    Singapore

  • Event location

    Hradec Králové

  • Event date

    Jul 10, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article