All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The p-adic order of some Fibonomial coefficients

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F15%3A50003461" target="_blank" >RIV/62690094:18470/15:50003461 - isvavai.cz</a>

  • Result on the web

    <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Marques2/marques11.pdf" target="_blank" >https://cs.uwaterloo.ca/journals/JIS/VOL18/Marques2/marques11.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    The p-adic order of some Fibonomial coefficients

  • Original language description

    Let $(F_n)_{ngeq 0}$ be the Fibonacci sequence. For $1le kle m$, the Fibonomial coefficient is defined as $$atopwithdelims{m}{k}= frac{F_{m-k+1}cdots F_{m-1} F_{m}}{F_1cdots F_k}.$$ In 2013, the authors and Sellers proved that if $p$ is a prime number such that $pequiv -2$ or $2pmod 5$, then $p mid atopwithdelims{p^{a+1}}{ p^a}$ for all integers $ageq 1$. In this paper, we generalize this result by proving the exact division [ p^{lceil (a+delta_{p,2})/2rceil} parallel atopwithdelims{p^{a+1}}{ p^a} ,] for all prime $p$ and $ageq 1$ (where $delta_{i,j}$ denotes the Kronecker delta). Moreover, we shall prove that if $pequiv -1$ or $1pmod 5$, then $p nmid atopwithdelims{p^{a+1}}{ p^a}$ for all integers $ageq 1$ confirming therefore a recent conjecture.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of integer sequences

  • ISSN

    1530-7638

  • e-ISSN

  • Volume of the periodical

    18

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CA - CANADA

  • Number of pages

    10

  • Pages from-to

    1-10

  • UT code for WoS article

    000361002600001

  • EID of the result in the Scopus database