All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ON A SEQUENCE OF TRIDIAGONAL MATRICES, WHOSE PERMANENTS ARE RELATED TO FIBONACCI AND LUCAS NUMBERS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F15%3A50004069" target="_blank" >RIV/62690094:18470/15:50004069 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.ijpam.eu/contents/2015-105-4/11/11.pdf" target="_blank" >http://www.ijpam.eu/contents/2015-105-4/11/11.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.12732/ijpam.v105i4.11" target="_blank" >10.12732/ijpam.v105i4.11</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ON A SEQUENCE OF TRIDIAGONAL MATRICES, WHOSE PERMANENTS ARE RELATED TO FIBONACCI AND LUCAS NUMBERS

  • Original language description

    The Fibonacci sequence (or the sequence of Fibonacci numbers) $% (F_{n})_{ngeq 0}$ is the sequence of positive integers satisfying the recurrence $F_{n+2}=F_{n+1}+F_{n}$ with the initial conditions $F_{0}$ $=0$ and $F_{1}=$ 1. Similarily the Lucas numbers are the sequence of integers $% (L_{n})_{ngeq 0}$ defined by the recurrence relation $L_{n+2}=L_{n+1}+L_{n}$% , with $L_{0}=2$ and $L_{1}=1$. The Fibonacci and Lucas numbers are well-known for possessing many amazing properties In this paper, we generalize result on connection permanents of special tridiagonal matrices with Fibonacci numbers, as we show that more general sequences of tridiagonal matrices is related to the sequence of Fibonacci numbers.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International journal of pure and applied mathematics

  • ISSN

    1311-8080

  • e-ISSN

  • Volume of the periodical

    105

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    BG - BULGARIA

  • Number of pages

    6

  • Pages from-to

    715-721

  • UT code for WoS article

  • EID of the result in the Scopus database