Existence of the Stationary Solution of a Rayleigh-Type Equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F16%3A50005125" target="_blank" >RIV/62690094:18470/16:50005125 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1134/S0001434616050023" target="_blank" >http://dx.doi.org/10.1134/S0001434616050023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1134/S0001434616050023" target="_blank" >10.1134/S0001434616050023</a>
Alternative languages
Result language
angličtina
Original language name
Existence of the Stationary Solution of a Rayleigh-Type Equation
Original language description
A fluid flow along a semi-infinite plate with small periodic irregularities on the surface is considered for large Reynolds numbers. The boundary layer has a double-deck structure: a thin boundary layer ("lower deck") and a classical Prandtl boundary layer ("upper deck"). The aim of this paper is to prove the existence and uniqueness of the stationary solution of a Rayleigh-type equation, which describes oscillations of the vertical velocity component in the classical boundary layer.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical notes
ISSN
0001-4346
e-ISSN
—
Volume of the periodical
99
Issue of the periodical within the volume
5-6
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
636-642
UT code for WoS article
000382176900002
EID of the result in the Scopus database
—