Cohomogeneity one Kahler and Kahler-Einstein manifolds with one singular orbit I
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F17%3A50013409" target="_blank" >RIV/62690094:18470/17:50013409 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007%2Fs10455-017-9550-8" target="_blank" >https://link.springer.com/article/10.1007%2Fs10455-017-9550-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10455-017-9550-8" target="_blank" >10.1007/s10455-017-9550-8</a>
Alternative languages
Result language
angličtina
Original language name
Cohomogeneity one Kahler and Kahler-Einstein manifolds with one singular orbit I
Original language description
Let M be a cohomogeneity one manifold of a compact semisimple Lie group G with one singular orbit S-0 = G/H. Then M is G-diffeomorphic to the total space G x(H) V of the homogeneous vector bundle over S-0 defined by a sphere transitive representation of G in a vector space V. We describe all such manifolds M which admit an invariant Kahler structure of standard type. Thismeans that the restriction mu : S = Gx = G/L -> F = G/K of the moment map of M to a regular orbit S = G/L is a holomorphic map of S with the induced CR structure onto a flag manifold F = G/K, where K = N-G(L), endowed with an invariant complex structure J(F). We describe all such standard Kahler cohomogeneity one manifolds in terms of the painted Dynkin diagram associated with F = G/K, J(F)) and a parameterized interval in some T-Weyl chamber. We determine which of these manifolds admit invariant Kahler-Einstein metrics.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY
ISSN
0232-704X
e-ISSN
—
Volume of the periodical
52
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
30
Pages from-to
99-128
UT code for WoS article
000405297600006
EID of the result in the Scopus database
—