All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The generalized and modified Halton sequences in Cantor bases

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F19%3A50015458" target="_blank" >RIV/62690094:18470/19:50015458 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s00605-018-1225-4" target="_blank" >https://link.springer.com/article/10.1007/s00605-018-1225-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00605-018-1225-4" target="_blank" >10.1007/s00605-018-1225-4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The generalized and modified Halton sequences in Cantor bases

  • Original language description

    This paper aims to generalize results that have appeared in Atanassov (Math Balk New Ser 18(1–2):15–32, 2004). We consider here variants of the Halton sequences in a generalized numeration system, called the Cantor expansion, with respect to arbitrary sequences of permutations of the Cantor base. We first show that they provide a wealth of low-discrepancy sequences by giving an estimate of (star) discrepancy bound of the generalized Halton sequence in bounded Cantor bases. Then we impose certain conditions on the sequences of permutations of the Cantor base which are analogous, but not straightforward, to the modified Halton sequence introduced by E.I. Atanassov. We show that this modified Halton sequence in Cantor bases attains a better estimate of the (star) discrepancy bound than the generalized Halton sequence in Cantor bases.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Monatshefte für Mathematik

  • ISSN

    0026-9255

  • e-ISSN

  • Volume of the periodical

    188

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    AT - AUSTRIA

  • Number of pages

    29

  • Pages from-to

    1-29

  • UT code for WoS article

    000454836600001

  • EID of the result in the Scopus database

    2-s2.0-85059487852