The generalized and modified Halton sequences in Cantor bases
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F19%3A50015458" target="_blank" >RIV/62690094:18470/19:50015458 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00605-018-1225-4" target="_blank" >https://link.springer.com/article/10.1007/s00605-018-1225-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00605-018-1225-4" target="_blank" >10.1007/s00605-018-1225-4</a>
Alternative languages
Result language
angličtina
Original language name
The generalized and modified Halton sequences in Cantor bases
Original language description
This paper aims to generalize results that have appeared in Atanassov (Math Balk New Ser 18(1–2):15–32, 2004). We consider here variants of the Halton sequences in a generalized numeration system, called the Cantor expansion, with respect to arbitrary sequences of permutations of the Cantor base. We first show that they provide a wealth of low-discrepancy sequences by giving an estimate of (star) discrepancy bound of the generalized Halton sequence in bounded Cantor bases. Then we impose certain conditions on the sequences of permutations of the Cantor base which are analogous, but not straightforward, to the modified Halton sequence introduced by E.I. Atanassov. We show that this modified Halton sequence in Cantor bases attains a better estimate of the (star) discrepancy bound than the generalized Halton sequence in Cantor bases.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Monatshefte für Mathematik
ISSN
0026-9255
e-ISSN
—
Volume of the periodical
188
Issue of the periodical within the volume
1
Country of publishing house
AT - AUSTRIA
Number of pages
29
Pages from-to
1-29
UT code for WoS article
000454836600001
EID of the result in the Scopus database
2-s2.0-85059487852