All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Algebraic numbers as product of powers of transcendental numbers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F19%3A50015674" target="_blank" >RIV/62690094:18470/19:50015674 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2073-8994/11/7/887" target="_blank" >https://www.mdpi.com/2073-8994/11/7/887</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/sym11070887" target="_blank" >10.3390/sym11070887</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Algebraic numbers as product of powers of transcendental numbers

  • Original language description

    The elementary symmetric functions played a crucial role in the study of zeros of non-zero polynomials in $C[x]$, and the problem of finding zeros in $Q[x]$ leads to the definition of algebraic and transcendental numbers. Recently, [Marques, D. Algebraic numbers of the form $P(T)^{Q(T)}$, with $T$ transcendental, textit{Elem. Math.} {bf 2010}, {em 65}, 78--80.] studied the set of algebraic numbers in the form $P(T)^{Q(T)}$. In this paper, we generalize this result by showing the existence of algebraic numbers which can be written in the form $P_1(T)^{Q_1(T)}cdots P_n(T)^{Q_n(T)}$ for some transcendental number $T$, where $P_1,ldots,P_n,Q_1,ldots,Q_n$ are prescribed, non-constant polynomials in $Q[x]$ (under weak conditions). More generally, our result generalizes results on the arithmetic nature of $z^w$ when $z$ and $w$ are transcendental.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Symmetry-Basel

  • ISSN

    2073-8994

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    5

  • Pages from-to

    1-5

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85068569210