All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mycorrhiza Regulates Signal Substance Levels and Pathogen Defense Gene Expression to Resist Citrus Canker

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F19%3A50016691" target="_blank" >RIV/62690094:18470/19:50016691 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.notulaebotanicae.ro/index.php/nbha/article/view/11561" target="_blank" >https://www.notulaebotanicae.ro/index.php/nbha/article/view/11561</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.15835/nbha47411561" target="_blank" >10.15835/nbha47411561</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Mycorrhiza Regulates Signal Substance Levels and Pathogen Defense Gene Expression to Resist Citrus Canker

  • Original language description

    Citrus canker is a quarantined disease, severely harming citrus plants. Soil beneficial arbuscular mycorrhizal fungi (AMF) can provide a biological control pathway to resist pathogens. This work was to test changes of signal substances including hydrogen peroxide (H2O2), nitric oxide (NO), calmodulin (CaM), salicylic acid (SA) and jasmonic acid (JA) and the pathogen defense gene expression in roots of AMF (Paraglomus occultum) and non-AMF trifoliate orange (Poncirus trifoliata) seedlings after infected by a expressions citrus canker pathogen (Xanthomonas axonopodis pv. Citri, Xac). AMF inoculation significantly improved plant height, stem diameter and leaf number. Xac infection dramatically decreased root H2O2, NO, and SA levels, but increased root CaM and JA concentrations in non-AMF seedlings. There were higher H2O2 and CaM levels and lower JA levels in Xac-infected seedlings than in non-Xac-infected seedlings under mycorrhization. Under non-Xac infection, mycorrhizal treatment reduced root H2O2, NO, and SA but increased CaM and JA levels. However, under Xac infection, mycorrhizal inoculation distinctly accelerated root H2O2, NO, CaM, and SA accumulation, accompanied with up-regulated expression levels of root PtEPS1 (enhance pseudomonas susceptibility 1) and PtPR4 (pathogenesis related gene 4), indicating that Xac stimulated mycorrhizal roles in enhancing resistance of citrus canker. Such results imply that citrus plants with pre-inoculated AMF had stronger resistance to Xac infection through increasing signal substrate accumulation and pathogen defense gene expressions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10611 - Plant sciences, botany

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Notulae Botanicae Horti Agrobotanici Cluj-Napoca

  • ISSN

    0255-965X

  • e-ISSN

  • Volume of the periodical

    47

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    RO - ROMANIA

  • Number of pages

    7

  • Pages from-to

    1161-1167

  • UT code for WoS article

    000508003800018

  • EID of the result in the Scopus database