On Repdigits as Sums of Fibonacci and Tribonacci Numbers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50017496" target="_blank" >RIV/62690094:18470/20:50017496 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2073-8994/12/11/1774" target="_blank" >https://www.mdpi.com/2073-8994/12/11/1774</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym12111774" target="_blank" >10.3390/sym12111774</a>
Alternative languages
Result language
angličtina
Original language name
On Repdigits as Sums of Fibonacci and Tribonacci Numbers
Original language description
In this paper, we use Baker's theory for nonzero linear forms in logarithms of algebraic numbers and a Baker-Davenport reduction procedure to find all repdigits (i.e., numbers with only one distinct digit in its decimal expansion, thus they can be seen as the easiest case of palindromic numbers, which are a "symmetrical" type of numbers) that can be written in the form F-n+T-n, for some n >= 1, where (F-n)(n >= 0) and (T-n)(n >= 0) are the sequences of Fibonacci and Tribonacci numbers, respectively.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Symmetry-Basel
ISSN
2073-8994
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
11
Country of publishing house
CH - SWITZERLAND
Number of pages
7
Pages from-to
"Article Number: 1774"
UT code for WoS article
000593807100001
EID of the result in the Scopus database
2-s2.0-85094646860