Bound state solutions of the Klein-Gordon equation with energy-dependent potentials
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50017935" target="_blank" >RIV/62690094:18470/21:50017935 - isvavai.cz</a>
Result on the web
<a href="http://doi.org/10.1142/S0217732321500164" target="_blank" >http://doi.org/10.1142/S0217732321500164</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0217732321500164" target="_blank" >10.1142/S0217732321500164</a>
Alternative languages
Result language
angličtina
Original language name
Bound state solutions of the Klein-Gordon equation with energy-dependent potentials
Original language description
In this paper, we investigate the exact bound state solution of the Klein-Gordon equation for an energy-dependent Coulomb-like vector plus scalar potential energies. To the best of our knowledge, this problem is examined in literature with a constant and position dependent mass functions. As a novelty, we assume a mass-function that depends on energy and position and revisit the problem with the following cases: First, we examine the case where the mixed vector and scalar potential energy possess equal magnitude and equal sign as well as an opposite sign. Then, we study pure scalar and pure vector cases. In each case, we derive an analytic expression of the energy spectrum by employing the asymptotic iteration method. We obtain a nontrivial relation among the tuning parameters which lead the examined problem to a constant mass one. Finally, we calculate the energy spectrum by the Secant method and show that the corresponding unnormalized wave functions satisfy the boundary conditions. We conclude the paper with a comparison of the calculated energy spectra versus tuning parameters.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10303 - Particles and field physics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Modern Physics Letters A
ISSN
0217-7323
e-ISSN
—
Volume of the periodical
36
Issue of the periodical within the volume
4
Country of publishing house
SG - SINGAPORE
Number of pages
19
Pages from-to
"Article Number: 2150016"
UT code for WoS article
000617677700002
EID of the result in the Scopus database
2-s2.0-85097913933