All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cat and Mouse Based Optimizer: A New Nature-Inspired Optimization Algorithm

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50018232" target="_blank" >RIV/62690094:18470/21:50018232 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1424-8220/21/15/5214" target="_blank" >https://www.mdpi.com/1424-8220/21/15/5214</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/s21155214" target="_blank" >10.3390/s21155214</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cat and Mouse Based Optimizer: A New Nature-Inspired Optimization Algorithm

  • Original language description

    Numerous optimization problems designed in different branches of science and the real world must be solved using appropriate techniques. Population-based optimization algorithms are some of the most important and practical techniques for solving optimization problems. In this paper, a new optimization algorithm called the Cat and Mouse-Based Optimizer (CMBO) is presented that mimics the natural behavior between cats and mice. In the proposed CMBO, the movement of cats towards mice as well as the escape of mice towards havens is simulated. Mathematical modeling and formulation of the proposed CMBO for implementation on optimization problems are presented. The performance of the CMBO is evaluated on a standard set of objective functions of three different types including unimodal, high-dimensional multimodal, and fixed-dimensional multimodal. The results of optimization of objective functions show that the proposed CMBO has a good ability to solve various optimization problems. Moreover, the optimization results obtained from the CMBO are compared with the performance of nine other well-known algorithms including Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), Teaching-Learning-Based Optimization (TLBO), Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), Marine Predators Algorithm (MPA), Tunicate Swarm Algorithm (TSA), and Teamwork Optimization Algorithm (TOA). The performance analysis of the proposed CMBO against the compared algorithms shows that CMBO is much more competitive than other algorithms by providing more suitable quasi-optimal solutions that are closer to the global optimal.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Sensors

  • ISSN

    1424-8220

  • e-ISSN

  • Volume of the periodical

    21

  • Issue of the periodical within the volume

    15

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    30

  • Pages from-to

    "Article Number: 5214"

  • UT code for WoS article

    000682238300001

  • EID of the result in the Scopus database

    2-s2.0-85111410390