All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Parallel spinors on Lorentzian Weyl spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50018342" target="_blank" >RIV/62690094:18470/21:50018342 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14310/21:00123684

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s00605-021-01569-x" target="_blank" >https://link.springer.com/article/10.1007/s00605-021-01569-x</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00605-021-01569-x" target="_blank" >10.1007/s00605-021-01569-x</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Parallel spinors on Lorentzian Weyl spaces

  • Original language description

    Holonomy algebras of Lorentzian Weyl spin manifolds with weighted parallel spinors are found. For Lorentzian Weyl manifolds admitting recurrent null vector fields are introduced special local coordinates similar to Kundt and Walker ones. Using that, the local form of all Lorentzian Weyl spin manifolds with weighted parallel spinors is given. The Einstein-Weyl equation for the obtained Weyl structures is analyzed and examples of Einstein-Weyl spaces with weighted parallel spinors are given.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Monatshefte für Mathematik

  • ISSN

    0026-9255

  • e-ISSN

  • Volume of the periodical

    196

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    AT - AUSTRIA

  • Number of pages

    20

  • Pages from-to

    39-58

  • UT code for WoS article

    000650203300001

  • EID of the result in the Scopus database

    2-s2.0-85105861510