Differential Effects of Exogenous Glomalin-Related Soil Proteins on Plant Growth of Trifoliate Orange Through Regulating Auxin Changes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50018411" target="_blank" >RIV/62690094:18470/21:50018411 - isvavai.cz</a>
Result on the web
<a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8488200/" target="_blank" >https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8488200/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fpls.2021.745402" target="_blank" >10.3389/fpls.2021.745402</a>
Alternative languages
Result language
angličtina
Original language name
Differential Effects of Exogenous Glomalin-Related Soil Proteins on Plant Growth of Trifoliate Orange Through Regulating Auxin Changes
Original language description
Multiple functions of glomalin released by arbuscular mycorrhizal fungi are well-recognized, whereas the role of exogenous glomalins including easily extractable glomalin-related soil protein (EE-GRSP) and difficultly extractable glomalin-related soil protein (DE-GRSP) is unexplored for plant responses. Our study was carried out to assess the effects of exogenous EE-GRSP and DE-GRSP at varying strengths on plant growth and chlorophyll concentration of trifoliate orange (Poncirus trifoliata) seedlings, along with changes in root nutrient acquisition, auxin content, auxin-related enzyme and transporter protein gene expression, and element contents of purified GRSP. Sixteen weeks later, exogenous GRSP displayed differential effects on plant growth (height, stem diameter, leaf number, and biomass production): the increase by EE-GRSP and the decrease by DE-GRSP. The best positive effect on plant growth occurred at exogenous EE-GRSP at 1/2 strength. Similarly, the GRSP application also differently affected total chlorophyll content, root morphology (total length, surface area, and volume), and root N, P, and K content: positive effect by EE-GRSP and negative effect by DE-GRSP. Exogenous EE-GRSP accumulated more indoleacetic acid (IAA) in roots, which was associated with the upregulated expression of root auxin synthetic enzyme genes (PtTAA1, PtYUC3, and PtYUC4) and auxin influx transporter protein genes (PtLAX1, PtLAX2, and PtLAX3). On the other hand, exogenous DE-GRSP inhibited root IAA and indolebutyric acid (IBA) content, associated with the downregulated expression of root PtTAA1, PtLAX1, and PtLAX3. Root IAA positively correlated with root PtTAA1, PtYUC3, PtYUC4, PtLAX1, and PtLAX3 expression. Purified EE-GRSP and DE-GRSP showed similar element composition but varied in part element (C, O, P, Ca, Cu, Mn, Zn, Fe, and Mo) concentration. It concluded that exogenous GRSP triggered differential effects on growth response, and the effect was associated with the element content of pure GRSP and the change in auxins and root morphology. EE-GRSP displays a promise as a plant growth biostimulant in citriculture.</p>
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10611 - Plant sciences, botany
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Frontiers in plant science
ISSN
1664-462X
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
September
Country of publishing house
CH - SWITZERLAND
Number of pages
11
Pages from-to
"Article Number: 745402"
UT code for WoS article
000703120300001
EID of the result in the Scopus database
2-s2.0-85116462547