All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Improved Dragonfly Optimizer for Intrusion Detection Using Deep Clustering CNN-PSO Classifier

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50018604" target="_blank" >RIV/62690094:18470/22:50018604 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.techscience.com/cmc/v70n3/44980" target="_blank" >https://www.techscience.com/cmc/v70n3/44980</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.32604/cmc.2022.020769" target="_blank" >10.32604/cmc.2022.020769</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Improved Dragonfly Optimizer for Intrusion Detection Using Deep Clustering CNN-PSO Classifier

  • Original language description

    With the rapid growth of internet based services and the data generated on these services are attracted by the attackers to intrude the networking services and information. Based on the characteristics of these intruders, many researchers attempted to aim to detect the intrusion with the help of automating process. Since, the large volume of data is generated and transferred through network, the security and performance are remained an issue. IDS (Intrusion Detection System) was developed to detect and prevent the intruders and secure the network systems. The performance and loss are still an issue because of the features space grows while detecting the intruders. In this paper, deep clustering based CNN have been used to detect the intruders with the help of Meta heuristic algorithms for feature selection and preprocessing. The proposed system includes three phases such as preprocessing, feature selection and classification. In the first phase, KDD dataset is preprocessed by using Binning normalization and Eigen-PCA based discretization method. In second phase, feature selection is performed by using Information Gain based Dragonfly Optimizer (IGDFO). Finally, Deep clustering based Convolutional Neural Network (CCNN) classifier optimized with Particle Swarm Optimization (PSO) identifies intrusion attacks efficiently. The clustering loss and network loss can be reduced with the optimization algorithm. We evaluate the proposed IDS model with the NSL-KDD dataset in terms of evaluation metrics. The experimental results show that proposed system achieves better performance compared with the existing system in terms of accuracy, precision, recall, f-measure and false detection rate.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    CMC-Computers, Materials &amp; Continua

  • ISSN

    1546-2218

  • e-ISSN

    1546-2226

  • Volume of the periodical

    70

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

    5949-5965

  • UT code for WoS article

    000707364500018

  • EID of the result in the Scopus database