All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Selecting Some Variables to Update-Based Algorithm for Solving Optimization Problems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019107" target="_blank" >RIV/62690094:18470/22:50019107 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1424-8220/22/5/1795" target="_blank" >https://www.mdpi.com/1424-8220/22/5/1795</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/s22051795" target="_blank" >10.3390/s22051795</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Selecting Some Variables to Update-Based Algorithm for Solving Optimization Problems

  • Original language description

    With the advancement of science and technology, new complex optimization problems have emerged, and the achievement of optimal solutions has become increasingly important. Many of these problems have features and difficulties such as non-convex, nonlinear, discrete search space, and a non-differentiable objective function. Achieving the optimal solution to such problems has become a major challenge. To address this challenge and provide a solution to deal with the complexities and difficulties of optimization applications, a new stochastic-based optimization algorithm is proposed in this study. Optimization algorithms are a type of stochastic approach for addressing optimization issues that use random scanning of the search space to produce quasi-optimal answers. The Selecting Some Variables to Update-Based Algorithm (SSVUBA) is a new optimization algorithm developed in this study to handle optimization issues in various fields. The suggested algorithm&apos;s key principles are to make better use of the information provided by different members of the population and to adjust the number of variables used to update the algorithm population during the iterations of the algorithm. The theory of the proposed SSVUBA is described, and then its mathematical model is offered for use in solving optimization issues. Fifty-three objective functions, including unimodal, multimodal, and CEC 2017 test functions, are utilized to assess the ability and usefulness of the proposed SSVUBA in addressing optimization issues. SSVUBA&apos;s performance in optimizing real-world applications is evaluated on four engineering design issues. Furthermore, the performance of SSVUBA in optimization was compared to the performance of eight well-known algorithms to further evaluate its quality. The simulation results reveal that the proposed SSVUBA has a significant ability to handle various optimization issues and that it outperforms other competitor algorithms by giving appropriate quasi-optimal solutions that are closer to the global optima.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Sensors

  • ISSN

    1424-8220

  • e-ISSN

    1424-8220

  • Volume of the periodical

    22

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    43

  • Pages from-to

    "Article Number: 1795"

  • UT code for WoS article

    000771328100001

  • EID of the result in the Scopus database

    2-s2.0-85125076174